Info
Info
News Article

Feature: Designing Microfabrication Lab Equipment With Research Flexibility In Mind

News

As research becomes more complex, sophisticated cleanrooms have become a virtual necessity for a wide range of cutting edge physical science, material science, and biomedical disciplines. Louise Bertagnolli, president of JST Manufacturing explains.

Due to the financial investment required for such facilities, both university and private R&D laboratories are designed and built to accommodate the needs of a wide range of researchers.  This presents a challenge: few administrators have the experience to select and set up lab equipment with the versatility required to serve such a diverse group of users over decades of continually changing research.

Now a growing number of lab administrators are optimizing their microfabrication equipment, both for current and future needs, by involving their vendors early in the process. This enables expert planning as well as the selection of standard equipment options that can improve safety, usability, and efficiency while cutting cost.

"Often university lab administrators have never built their own cleanroom before, so they hire an architectural firm to do the design, but are still a little lost on how to lay out the equipment for all the different potential uses," says Louise Bertagnolli, president of JST Manufacturing.

"Because universities are always pushing the boundaries of research, the equipment has to be very flexible so it can be used in ways not even conceived of yet."

A nationwide manufacturer of manual and automated wet processing equipment, JST's mechanical, electrical, and chemical engineers have many years of experience in industries including semiconductors, both silicon and compound, MEMS, photovoltaics, LEDs, Flat Panel Displays, and sensors.

Whether for compound semiconductor, nanotechnology, Micro-Electro-Mechanical Systems (MEMS), biophotonics, biomedical electronics, or creating solar power alternatives to traditional silicon wafer construction, much of the advanced research done in labs today requires microfabrication operations.  This typically includes wet processing equipment for metal lift-off, stripping, etching, plating/coating, cleaning, and de-bonding.

Dennis M. Schweiger, Senior Director of Infrastructure at the University of Michigan's Lurie Nanofabrication Facility (LNF), feels that the right combination of user requirements and assistance from the equipment fabricator can make a significant difference in the design, layout, and operation of a wet processing station.

The LNF is a world-class facility in all areas of semiconductor device and circuit fabrication, integrated microsystems and MEMS technologies, nanotechnology, nanoelectronics, nanophotonics and nanobiotechnology. The LNF is an open use facility with hundreds of users from various UM departments, as well as many other universities and businesses.

Schweiger states, "Since we essentially rent lab space and equipment to our diverse users, it is important that we provide them with benches that suit their purposes well, from those who are processing wafers to those who may be doing very advanced research or testing on non-wafer components."

According to Bertagnolli, who has guided numerous R&D lab administrators through the equipment design and selection process, the main concern is about setting up the cleanroom and procedures to serve the needs of users, but the process is not always well defined and there are many unknowns.

"When designing and laying out cleanroom equipment, it is important to talk with a vendor or consultant with the experience to help you achieve your evolving research goals," says Bertagnolli.  "It is also essential that they help ensure it is correctly set up, that the proper safety, operation, and maintenance procedures are in place, and that lab managers are properly trained to carry these out."

Bertagnolli says that maintaining safety and flexible function for wet processing equipment often requires selecting the most appropriate options from several technologies.  This may involve various chemistries, temperature controls, chemical baths/dips, ergonomic designs, as well as cleaning, filtration, ventilation, safety, and disposal technologies.

Designing Modular and Custom Parameters

To facilitate the economical design and building of a wet processing equipment solution, many users insist on a standardized approach with customizable features that will best handle their applications parameters.

For example, JST utilizes standard products and standard methodologies to design and manufacture equipment. The equipment is modular by design, allowing for easy changing and reconfiguration should process or product requirements change. 

Another powerful feature: each unit is designed with software that can perform all tool functions, including those that are not required. With this, end users can create their own process, or recipes, with all sub-routines at their disposal.

"We like to give customers added flexibility by programming their equipment to do everything that the equipment is capable of doing," explains Bertagnolli. "This enables them to dial in applications, such as chemical concentrations.  They can also turn various features on or off, depending on your process requirements. Even though they may not need some of the features today, they may want to turn them on in the future, which can be both economical and powerful."

Specifying the design parameters for many manual benches may not be as involved as those of automated systems.  However, soliciting the opinion of equipment manufacturers regarding equipment design may be highly beneficial.

"Certain processes like etchings and cleanings lab managers will want to be flexible enough to accommodate a wide range of users and projects," says Bertagnolli. "We are often asked for tank construction materials that can withstand several concentrated acids, so part of design flexibility is ensuring you use the most compatible materials for the most acids."

"Another aspect to consider is properly separating, neutralizing, and disposing of all the chemistries involved after use, whether in drains or tanks for treatment or pick up," she adds.

According to Bertagnolli, having the vendor visit the user's facility can contribute to equipment design versatility that can accommodate changes in lab use over the long term.

"An eye toward optimizing working space, operating cost, or maintenance can go a long way toward creating a cleanroom that will serve the user community well now and in the future," says Bertagnolli.

Optimizing LNF's Lab

The LNF's Schweiger at the University of Michigan explains that the original equipment design for the new lab areas wet processing benches was very specific, and determined by LNF staff.

"We had looked at it in terms of process flow, from start to finish, not really considering the variety, and variation, of process samples that our user community might be working with, how we'd accommodate non-standard sample sizes, or what the impact might be in total cost of ownership with respect to chemical usage," he says.

Schweiger adds that the some of the new benches had their decks reconfigured once the tools were installed.  Several of the earlier benches, some of which were purchased over 20 years ago, were also modified to allow for more flexibility in meeting the process needs of the user community.

"In retrospect, our initial plan for the deck space, and processing capability of the benches, wasn't adaptable or flexible enough, and we worked with JST to implement modifications so that the bench decks were simpler, and could provide more working space," Schweiger concluded.



AngelTech Live III: Watch the virtual event ON-DEMAND!

AngelTech Live III was broadcast live on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and features online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

The event covered the whole spectrum of key developments affecting the compound semiconductor industry. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. This was considered a roadmap for this device, along with technologies for boosting its output.

With 3 interactive sessions over 1 day AngelTech Live III proved to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FREE

VIEW ON-DEMAND
Edwards Officially Opens New Flagship Service Technology Centre In Dublin
Nordson Ships First SELECT Unit From New Global Manufacturing Facility
Picosun Strengthens Its Position In The Semiconductor Market
ACM Research Enters Bevel Etch Market To Support Emerging Process Steps In 3D NAND, DRAM And Advanced Logic Manufacturing
Blaize Announces $71 Million Series D Financing
ASM AMICRA Unveils Three New Manufacturing Systems
Renesas And Syntiant Develop Voice-Controlled Multimodal AI Solution
Xenics Expands Its Bobcat Product Family And Makes SWIR Cameras Affordable.
Institute Microelectronics And Photonics Chooses Tektronix For Semiconductor Testing At Very Low Currents
Pfeiffer Vacuum Presents A Cloud-based Solution For Service Management
SiTime MEMS Oscillators Support Square Point-of-Sale Products
Brewer Science Demonstrates Smart Devices & Printed Electronics Capabilities
Renault To Create Better Brand Visibility For Qualcomm In EV Market
Tignis Simplifies Adding ML To Advanced Process Control Manufacturing Systems
Edwards Opens Lab At Hillsboro Innovation Center
Path To Sensors Interoperability - IEEE SA Sensors Series Live Webinar
Pfeiffer Vacuum Introduces New HiScroll ATEX Scroll Pump
PragmatIC Semiconductor Re-invents Iconic Processor
Linton Crystal Technologies Uses AI To Detect Crystal Structure Loss, Notify Operator
Winbond’s Successful Interoperability Of OctalNAND Flash With Synopsys DesignWare AMBA IP
Pfeiffer Vacuum Introduces The Reliable And Low-vibration HiPace 80 Neo Turbopump
Sivers Semiconductors’ Japanese Customer Takes Step Towards Mass Production
Smart Eye And OmniVision Announce End-to-End Interior Sensing Solution
DISCO Corporation's Completion Of Construction At Kuwabata Plant

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event