Loading...
News Article

Taming "Wild" Electrons in Graphene

News

Discovery could lead to novel electronic devices

Graphene "“ a one-atom-thick layer of the stuff in pencils "“ is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped. Until now, that is. Scientists at Rutgers University-New Brunswick have learned how to tame the unruly electrons in graphene, paving the way for the ultra-fast transport of electrons with low loss of energy in novel systems. Their study was published online in Nature Nanotechnology.

"This shows we can electrically control the electrons in graphene," said Eva Y. Andrei, Board of Governors professor in Rutgers' Department of Physics and Astronomy in the School of Arts and Sciences and the study's senior author. "In the past, we couldn't do it. This is the reason people thought that one could not make devices like transistors that require switching with graphene, because their electrons run wild."

Now it may become possible to realize a graphene nano-scale transistor, Andrei said. Thus far, graphene electronics components include ultrafast amplifiers, supercapacitors and ultralow resistivity wires. The addition of a graphene transistor would be an important step towards an all-graphene electronics platform. Other graphene-based applications include ultrasensitive chemical and biological sensors, filters for desalination and water purification. Graphene is also being developed in flat flexible screens, and paintable and printable electronic circuits. Graphene is a nano-thin layer of the carbon-based graphite that pencils write with. It is far stronger than steel and a great conductor. But when electrons move through it, they do so in straight lines and their high velocity does not change.

"If they hit a barrier, they can't turn back, so they have to go through it," Andrei said. "People have been looking at how to control or tame these electrons." Her team managed to tame these wild electrons by sending voltage through a high-tech microscope with an extremely sharp tip, also the size of one atom. They created what resembles an optical system by sending voltage through a scanning tunneling microscope, which offers 3-D views of surfaces at the atomic scale. The microscope's sharp tip creates a force field that traps electrons in graphene or modifies their trajectories, similar to the effect a lens has on light rays. Electrons can easily be trapped and released, providing an efficient on-off switching mechanism, according to Andrei.

"You can trap electrons without making holes in the graphene," she said. "If you change the voltage, you can release the electrons. So you can catch them and let them go at will."

The next step would be to scale up by putting extremely thin wires, called nanowires, on top of graphene and controlling the electrons with voltages, she said. The study's co-lead authors are Yuhang Jiang and Jinhai Mao, Rutgers postdoctoral fellows, and a graduate student at Universiteit Antwerpen in Belgium. The other Rutgers co-author is Guohong Li, a research associate.

Xenics Expands Its Advanced Imaging Portfolio
IDTechEx looks at sustainable helium use
Compact industrial 3kW programmable power supplies
PCIM Expo 2025 even bigger to meet growing demand for power electronics
Xiphera develops quantum-resilient hardware security solutions for space
Advantest to showcase IC test solutions at SEMICON India
ASMPT and TATA Electronics Private Limited form strategic partnership
Singapore and India sign MOU on semiconductor ecosystem partnership
The Netherlands expands export control measure for advanced semiconductor manufacturing equipment
Tech industry veteran Anders Storm named CEO of Dirac Research
Testing time in Taiwan
Electro Rent unveils large facility in Mechelen, Belgium
AEM expands system level test on AMPS Platform
Absolics turns to Solace
ACM Research receives orders for wafer-level packaging tools
En route towards the first German quantum computer
Element Six wins U.S. Department of Defense UWBGS program
ACM Research expands Fan-Out Panel-Level Packaging portfolio
Electroninks launches Copper MOD Ink
Advanced thermal control techniques to improve wafer manufacturing yield
Advances in active alignment engines for efficient photonics device test and assembly
Automation in semiconductor test processes: a key factor in modern production
ATE testing challenges of heterogeneous silicon chips with advanced packaging
Urgent orders boost wafer foundry utilisation in Q2
High performance inspection solutions at SMTAI 2024
Imec at the 50th IEEE European Solid-State Electronics Research Conference
Keysight unveils Wire Bond Inspection solution
Biden-Harris Administration reveals preliminary terms with HP
STMicroelectronics joins Quintauris as sixth shareholder
IDTechEx explores advanced semiconductor packaging
RPI and Hokkaido University sign Letter of Intent for semiconductor collaboration
KoMiCo to establish Mesa cleaning and coating facility
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: