+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Engineers unlock potential for faster computing


University of Utah engineers discovered a way to create a special material -- a metal layer on top of a silicon semiconductor -- that could lead to cost-effective, superfast computers that perform lightning-fast calculations but don't overheat.



Feng Liu (left), chair of the University of Utah Department of Materials Science and Engineering, and Miao Zhou, a postdoctoral fellow, co-authored a study of a new "topological insulator" that could lead theoretically to faster computing.
Credit: Dan Hixson, University of Utah College of Engineering

This new "topological insulator" behaves like an insulator on the inside but conducts electricity on the outside and may pave the way for quantum computers and fast spintronic devices.

The research, led by University of Utah materials science and engineering professor Feng Liu, was published today in the journal Proceedings of the National Academy of Sciences.

Since the discovery of topological insulators almost a decade ago as a class of material designed to speed up computers, scientists have been trying to create a topological insulator that creates a large energy gap.

An energy gap is the amount of energy it takes for electrons to conduct electricity in a given material. A larger gap allows electricity to be conducted on a material's surface so a computer can operate at room temperature while remaining stable. Liu and his team found that bismuth metal deposited on the silicon can result in a more stable large-gap topological insulator. But just as important, this process can be cost-effective and readily integrated with current widespread silicon semiconductor manufacturing techniques.

"We can put it on silicon so it can be married or combined with the existing semiconductor technology," Liu says. "This is very important. It makes it more experimentally feasible and practically realistic."

Because the bismuth layer is atomically bonded but electronically isolated from the silicon layer, it creates a large energy gap.

"It has the largest energy gap that was ever predicted. It makes room-temperature applications a possibility for topological insulator-based devices or computers," Liu says.

Quantum computers, which have not been built yet, would run on the principles of quantum mechanics, in which the smallest particles of light and matter can be in different places at the same time. Quantum computers theoretically could be billions of times faster than conventional computers.

Quantum computing is expected to be used in a variety of uses, including in big data centers, security systems and encryption.

Spintronics is a new technology that uses the spin of an electron (instead of charge) in electronic devices. Spin is a property of electrons that makes the electron act like a tiny magnet. Spintronic devices can be used to encode and transfer information in electronic circuits and computers.

Liu's study was funded primarily by the U.S. Department of Energy and partly by the National Science Foundation through the University of Utah's Materials Research Science and Engineering Center.

Liu conducted the research with materials science and engineering postdoctoral fellows Miao Zhou, Zheng Liu, and Zhengfei Wang, and doctoral student Wenmei Ming.

 

Sono-Tek to demonstrate SPT200 Photoresist Coating
Microelectronics industry education and workforce challenges explored
PEMTRON to spotlight semiconductor inspection solutions
OMNIVISION introduces 'smallest camera module'
Socionext joins the Global Semiconductor Alliance
Imec unveils CMOS-based 56Gb/s zero-IF D-band beamforming transmitter
Flip chip technology market to reach $45.22 billion in 2032
EV Group and Fraunhofer IZM-ASSID expand partnership
Company founder Ayhan Busch celebrates her 90th birthday
Moxa 5G expert to discuss Private 5G Networks
Nordson Test & Inspection to showcase Advanced Semiconductor Technologies
Greene Tweed extends global reach
5G chipset market worth $92.billion in 2030
KYZEN to showcase Multi-Process Power Module Cleaner
Fractilia has introduced FAME OPC for improved OPC modeling
Critical Manufacturing and RoviSys expand strategic alliance
Mouser Electronics and Analog Devices publish Collaborative eBooks
Infineon introduces Product Carbon Footprint data for customers
Alphawave Semi collaborates with Arm
VIS and NXP to establish fab JV
Infineon drives decarbonisation and digitalisation
The future of flexible technology?
CEA-Leti reports three-layer integration breakthrough
Nidec Advance Technology signs agreement with Synergie Cad Group
Flip-chip die bonder promises speed improvement
Raspberry Pi selects Hailo to enable advanced AI capabilities
Gartner forecasts worldwide AI chips revenue to grow 33% in 2024
Imec demonstrates die-to-wafer hybrid bonding with a Cu interconnect pad pitch of 2µm
Doubling throughput of layer transfer technology
Accelerating lab to fab
Advanced packaging in the spotlight
ASML and imec open joint High NA EUV Lithography Lab
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: