+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Imec introduces first thin-silicon implantable chip

News

Imec, the world-leading research and innovation hub in nano-electronics and digital technology, announced today its success in fabricating a prototype implantable chip that aims to give patients more intuitive control over their arm prosthetics. The thin-silicon chip is a world's first for electrode density and was developed in collaboration with researchers at the University of Florida, as part of the IMPRESS project funded by the DARPA's HAPTIX program to create a closed-loop system for future-generation haptic prosthetics technology. 

Today, arm prosthetics technologies have been shown to give patients the ability to move their artificial arm and hand to grasp and manipulate objects. This is done by reading out signals from the person's muscles or peripheral nerves to control electromotors in the prosthesis thereby conveying intent.  Although very helpful, these prosthetics still don't allow a fine motor control and don't give patients a feeling of touch. Future advanced prosthetics under development will provide amputees with rich sensory content from these artificial limbs by delivering precise electrical patterns to the person's peripheral nerves using implanted electrode interfaces. According to Rizwan Bashirullah, associate professor of Electrical and Computer Engineering, and  director of the University of Florida's IMPRESS program (Implantable Multimodal Peripheral Recording and Stimulation System), "this effort aims to create such new peripheral nerve interfaces with greater channel count, electrode density, and information stability, enabled largely by imec's technological innovation."

As part of IMPRESS, imec has now made a prototype ultrathin (35µm) chip with a biocompatible, hermetic and flexible packaging. On its surface are 64 electrodes, with a possible extension to 128. This exceptionally high amount of electrodes allows fine-grained stimulation and recording. Through a needle attached to the chip, the package can be inserted and attached inside a nerve bundle, further increasing the precision of reading and stimulation compared to current technology which has substantially fewer electrodes and is wrapped around the nerve bundle. In practice, imec's solution will aim to give patients more control over their prosthetic arm and hand, and also the possibility of a finer haptic feedback.

"Our expertise in silicon neuro-interfaces made imec a natural fit for this project, where we have reached an important milestone for future-generation haptic prosthetics," commented Dries Braeken, R&D manager and project manager of IMPRESS at imec. "These interfaces allow a much higher density of electrodes and greater flexibility in recording and stimulating than any other technology. With the completion of this prototype and the first phase of the project, we look forward to the next phase where we will make the prototype ready for long-term implanted testing."

"A new biocompatible chip encapsulation technology is used, based on the stacking of nanolayers with superior diffusion barrier properties, alternating with very thin polymer layers with excellent mechanical behavior," explains Maaike Op de Beeck, program manager at imec. "The final result is an ultrathin flexible electronic device with a thickness comparable to that of a human hair, hence ultimately suitable for minimal invasive implantation."

This work was sponsored by the Defense Advanced Research Projects Agency's (DARPA) Biological Technologies Office under the auspices of Dr. Doug Weber through the Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-15-C-4018 to the University of Florida.

Photonis announces agreement to acquire Xenics, a leader in Infra-Red imaging solutions
Phlux Technology Secures £4m in Seed Funding
Start-ups: build up your ecosystem
Trends in the semiconductor industry
Advantest Unveils E5620 DR-SEM for Review and Classification of Ultra-Small Photomask Defects
Xenics introduces Wildcat+ 640
Advantest Introduces New inteXcell Series
Sony Semiconductor Israel Redefines IoT Connectivity Platform
Sensor Sales Stay Strong Due to Big ASP Rise
Advantest Launches ACS Solution Store to Enable Real-Time Data Analytics Solutions
Lam Research Acquires SEMSYSCO to Advance Chip Packaging
Infineon planning a major investment in a new factory in Dresden
Particle Measuring Systems introduces 10 nm aerosol particle counter
EBARA presents DYNOX Gas Abatement System
TSMC Launches OIP 3DFabric Alliance
DuPont reshapes IC materials manufacturing for post-COVID success
Evolving subfab vacuum challenges demand collaborative solutions
Next-gen low-k films can address present, future fabrication challenges
Critical Manufacturing redefines semiconductor MES for greater agility, success
Brewer Science bonding & dielectric materials deliver packaging solutions for 5G, IoT devices
Cutting FOPLP pattern distortion
EV Group advances leadership in optical lithography
ASM joins semiconductor climate consortium
KLA Launches New Double-Sided Direct Imaging Platform
Micron ships advanced DRAM technology with 1β node
Nor-Cal will do business as Pfeiffer Vacuum
ClassOne Equipment Releases Major New Lot of Used Semiconductor Tools for Resale
Park Systems Celebrates the Merger and Acquisition of Accurion GmbH
Amkor to support European semiconductor ecosystem
Nanometre components require sub-nanometre precision
ALD TechDay for More-than-Moore devices
Cadence Expands Collaboration with Samsung Foundry

{inStory3}
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: