+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

EV GROUP unveils low-temperature laser debonding solution

News

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, has unveiled its next-generation laser debonding solution, which enables high-throughput, low-cost-of-ownership (CoO) room-temperature debonding for ultra-thin and stacked fan-out packages. Designed as a module for integration in the company's benchmark EVG850 DB automated debonding system, the new laser debonding solution incorporates a solid-state laser and proprietary beam-shaping optics to enable optimized, force-free debonding.

Featuring both low-temperature debonding and high-temperature-processing stability, EVG's new laser debonding solution is ideal not only for fan-out wafer-level packaging (FoWLP), but also for processing compound semiconductors and power devices. System orders have already been placed for the new solution.

EV Group's next-generation laser debonding solution combines a solid-state UV laser, proprietary optics, modular platform and universal debonding process to create a high-throughput, low cost-of-ownership debonding process optimized for fan-out wafer-level packaging (FOWLP) compound semiconductor and power device applications. Shown here is the EVG850 DB automated laser debonding system.

"The semiconductor industry and its touch points grow more diverse by the day. The Internet of Things, automotive advancements, communications and virtual needs are now all being driven by the advancements in this industry," stated Paul Lindner, executive technology director at EV Group. "Many of these developments are now taking place at the packaging level, where the need for greater device functionality and smaller form factors has led to more complex packages, stacked packages, systems in package, as well as high-performance packages. EVG's temporary bonding and debonding solutions, including our latest-generation laser debonding module, play a crucial role in enabling wafer thinning to address the smaller form factors required for these new packaging architectures and applications."


Close up of EVG's next-generation laser debonding module with solid-state UV laser scanning across the surface of a fixed wafer.

FoWLP offers the ability to enable very thin devices and system integration with increased performance, functionality and design flexibility for consumer and mobile handheld devices. According to market research and strategy consulting firm Yole Développement, FoWLP is growing at a compound annual growth rate (CAGR) of 36 percent from 2017 to 2022, reaching more than $3 billion in 2022.* The extreme thinness of device wafers in FoWLP is driving the need for temporary carrier technologies. In the case of the "chip last / redistribution layer (RDL) first" FoWLP approach, the entire package flow occurs on a glass wafer or glass panel. Since the RDL layer is immediately on top of the debonding layer, low force is essential to minimizing risk of yield loss during the debonding process. Laser debonding is ideally suited to remove the glass handler after RDL formation due to its use of minimum force. In addition, the temperature stability of the laser debonding process allows it to easily remove bonding adhesive materials without impacting other materials in the package. The result is high process yield and low risk of device wafer breakage.

EVG's new laser debonding solution incorporates a solid-state UV laser and a proprietary optical setup that shapes the Gaussian beam profile of the laser into a "quasi top hat" beam profile. By employing this optical setup, EVG achieves a highly reproducible beam with minimal heat introduced to the device wafer and excellent spatial control. This enables tighter process control, which coupled with the high pulse repetition rate of the laser, the ability to conduct laser treatment and wafer separation in a single chamber to minimize handling time, and the ability to scan across the surface of a fixed wafer, leads to a well-controlled, high-throughput and low-temperature debonding process.

Comparison of three laser types (from left to right) advanced: UV laser solution from EVG; (2) conventional solid-state laser; and (3) excimer laser. The blue crisscross areas in the beam profile image indicate the radiant exposure used for the laser debond process while the red area indicates energy that cannot be used for debonding. The EVG laser debonding solution combines the best features of both other laser types.

Low laser maintenance, high carrier wafer lifetime, the ability to support fully automated handling on film frame, oversized carriers or free standing / unsupported thin wafers, and optimized footprint layout, all round out the system's low CoO advantages. In the tradition of EVG's open platform approach to wafer bonding, the laser debonding solution is also compatible with a wide variety of commercially available adhesive materials.

Product demonstrations of the new laser debonding solution are now available at EVG's cleanroom facilities.



Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: