Info
Info

Brewer Science Introduces Cost-Effective Alternative For Advanced-Node Wafer Patterning

 

Brewer Science, from the SPIE Advanced Lithography 2018 conference, has introduced its OptiLign™ commercial-quality directed self-assembly (DSA) material set developed in collaboration with Arkema. The OptiLign system currently includes three materials required for self-assembly: block copolymers, neutral layers and guiding layers. Developed together for optimal performance, these DSA materials are manufactured on Brewer Science’s commercial manufacturing equipment and provide a cost-effective path to advanced-node wafer patterning processes for feature sizes down to 12 nm.

Although Moore’s law is slowing, many foundries and integrated device manufacturers are continuing efforts to scale to finer nodes. As feature sizes shrink more aggressively with each node, the limits of manufacturing equipment are being stretched, and it has become cost-prohibitive to create them using existing patterning processes like self-aligned double patterning and self-aligned quadruple patterning. While the industry is close to the commercialization of extreme ultraviolet (EUV) lithography, the tool cost will limit its use. DSA offers an alternative to existing processes and can be performed on existing, installed fab tool sets. Additionally, DSA will serve as a complement to EUV when it becomes fully available.

“Taking OptiLign materials from pilot line to commercial-scale production represents the next significant milestone in making DSA a viable option for semiconductor manufacturing," said Dr. Srikanth (Sri) Kommu, executive director, Semiconductor Business, Brewer Science Inc. “Historically, the industry has relied on equipment enhancements to reach the next technology node. Now, materials solutions are stepping in to provide that edge and extend tool capabilities. The OptiLign product family is an example of this paradigm shift."

Brewer Science’s OptiLign family of DSA products provides all the materials needed for self-assembly, according to the company. Block copolymers define the pattern. Neutral layers allow the pattern to be formed on each layer. Lastly, guiding layers tell the material which way and how to orient. All the materials are designed to work together for optimal performance, and are dependent on material and surface energy. Additionally, through its partnership with Arkema, Brewer Science has tapped into a way to deliver DSA materials that allows for consistent feature sizes via a unique polymer production process. This process allows for the large scale needed to support an entire technology node, as well as a unique polymer quality and reproducibility, all of which sets OptiLign materials apart from the competition.

“Feature size is built into the molecular structure of the DSA materials and can vary from batch to batch, so securing a sub-nanometric reproducibility can be challenging," explained Dr. Ian Cayrefourcq, Director of Emerging Technologies, Arkema. “Arkema’s special process for formulating large batches of polymers of the same size allows Brewer Science to supply a fab with consistent feature sizes for the technology node’s life span


Helium Leak Detector Solutions
China’s Semiconductor Fab Capacity To Reach 20 Percent Worldwide Share In 2020
Infineon Expands U.S.-based IoT Security Research And Development Programs
Murata Invests In MEMS Sensor Manufacturing
Brewer Science Announces RDL-first Fan-out Packaging Material
New Material Could Improve Efficiency Of Computer Processing And Memory
Himax Technologies Rebukes Motley Fool Article
KLA-Tencor Expands IC Packaging Portfolio
Infineon Adds 200 V Half-bridge Gate Driver IC For Reliable Start-up Operation
Nova's Materials Metrology Solution Selected For 5nm Technology Node
Palomar Technologies Awarded ISO 9001:2015 Certificate
GLOBALFOUNDRIES Reshapes Technology Portfolio To Focus On Differentiated Offerings
Sensirion Announce Strong Revenue Growth In First Half-year 2018
Imec.xpand Raises EUR 117 Million To Invest In Innovative, Early-stage Ideas
VTT Is Ranked Fourth In The World's Largest Research Funding Programme
Rudolph Technologies Launches Second-gen Inspection And Metrology System
UGent And Imec Launch Fiber Optic Sensing Spin-off Sentea
Thermco Systems Expands Global Operations With Acquisition Of CSD Epitaxy
NXP Acquires OmniPHY To Accelerate Autonomous Driving And Vehicle Networks
Healthcare Transformation: A Business Opportunity For BioMEMS
Chroma Offers Semiconductor Test Solutions
SiTime And Bosch Accelerate Innovation In MEMS Timing For 5G And IoT
Teledyne E2v’s Emerald 12M And 16M Image Sensors Enter Mass Production
NanoScientific Symposium On Scanning Probe Microscopy (SPM)

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info