+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

New insulation technique paves the way for more powerful and smaller chips

News


Researchers at KU Leuven and imec have successfully developed a new technique to insulate microchips. The technique uses metal-organic frameworks, a new type of materials consisting of structured nanopores. In the long term, this method can be used for the development of even smaller and more powerful chips that consume less energy. The team has received an ERC Proof of Concept grant to further their research.

Computer chips are getting increasingly smaller. That’s not new: Gordon Moore, one of the founders of chip manufacturer Intel, already predicted it in 1965. Moore's law states that the number of transistors in a chip, or integrated circuit, doubles about every two years. This prognosis was later adjusted to 18 months, but the theory still stands. Chips are getting smaller and their processing power is increasing. Nowadays, a chip can have over a billion transistors.

But this continued reduction in size also brings with it a number of obstacles. The switches and wires are packed together so tightly that they generate more resistance. This, in turn, causes the chip to consume more energy to send signals. To have a well-functioning chip, you need an insulating substance that separates the wires from each other, and ensures that the electrical signals are not disrupted. However, that’s not an easy thing to achieve at the nanoscale level.

Nanoporous crystals[BVH1]

A study led by KU Leuven professor Rob Ameloot (Department of Microbial and Molecular systems) shows that a new technique might provide the solution. “We’re using metal-organic frameworks (MOFs) as the insulating substance. These are materials that consist of metal ions and organic molecules. Together, they form a crystal that is porous yet sturdy.”

For the first time, a research team at KU Leuven and imec managed to apply the MOF insulation to electronic material. An industrial method called chemical vapour deposition was used for this, says postdoctoral researcher Mikhail Krishtab (Department of Microbial and Molecular systems). “First, we place an oxide film on the surface. Then, we let it react with vapour of the organic material. This reaction causes the material to expand, forming the nanoporous crystals.”

“The main advantage of this method is that it's bottom-up,” says Krishtab. “We first deposit an oxide film, which then swells up to a very porous MOF material. You can compare it to a soufflé that puffs up in the oven and becomes very light. The MOF material forms a porous structure that fills all the gaps between the conductors. That’s how we know the insulation is complete and homogeneous. With other, top-down methods, there's always still the risk of small gaps in the insulation.”

Powerful and energy efficient

Professor Ameloot’s research group has received an ERC Proof of Concept grant to further develop the technique, in collaboration with Silvia Armini from imec’s team working on advanced dielectric materials for nanochips. “At imec, we have the expertise to develop wafer-based solutions, scaling technologies from lab to fab and paving the way to realising a manufacturable solution for the microelectronics industry.”

“We’ve shown that the MOF material has the right properties,” Ameloot continues. “Now, we just have to refine the finishing. The surface of the crystals is still irregular at the moment. We have to smoothen this to integrate the material in a chip.”

Once the technique has been perfected, it can be used to create powerful, small chips that consume less energy. Ameloot: “Various AI applications require a lot of processing power. Think of self-driving cars and smart cities. Technology companies are constantly looking for new solutions that are both quick and energy efficient. Our research can be a valuable contribution to a new generation of chips.”

More information

The study “Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics” was published in Nature Communications.

The Proof of Concept grants are awarded to ERC grant holders to valorise their research ideas. This Proof of Concept grant (LO-KMOF) builds on research that was supported by an ERC Starting Grant (grant agreement n° 716472, VAPORE).


[BVH1]Of ‘Nanoporous crystals in a smart IC nano-interconnect integration scheme [BVH1]

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: