Info
Info
News Article

A Novel Theory Of Heat: In The Search For Efficient Thermoelectrics

EPFL and MARVEL researchers have developed a new theory for heat conduction that can finally describe and predict the thermal conductivity of any insulating material.

Thermoelectric materials in particular hold vast potential for use in energy applications because they generate electricity from waste heat, such as that generated by industrial processes, by car and truck engines, or simply by the sun. Reducing the thermal conductivity of these materials by a factor of three, for example, would completely revolutionize existing waste-heat recovery, and also all refrigeration and air-cooling technology.

A unique theory for all insulating materials

In the paper Unified theory of thermal transport in crystals and glasses, out in Nature Physics, Michele Simoncelli, a PhD student at EPFL's Theory and Simulation of Materials (THEOS) Laboratory - together with Nicola Marzari, a professor at EPFL's School of Engineering and head of THEOS and of the MARVEL NCCR, and Francesco Mauri, a professor at the University of Rome-Sapienza - present a novel theory that finally decodes the fundamental, atomistic origin of heat conduction. Up to now, different formulations needed to be used depending on the systems studied (e.g., ordered materials, like a silicon chip, or disordered, like in a glass), and there wasn't a unified picture covering all possible cases. This has now been made possible by deriving directly from the quantum mechanics of dissipative systems a transport equation that covers on equal footing diffusion, hopping, and tunneling of heat.

Waste heat recovery
This fundamental understanding will allow scientists and engineers to accurately predict the thermal conductivity of any insulating material (in metals, the heat is carried by the electrons, and that is well understood) - this is exceedingly important for thermoelectrics (i.e. materials that can convert heat into electricity), since these have both crystal- and glass-like properties, and are much needed for waste-heat recovery, or for refrigeration without greenhouse gases (and if you think refrigeration is boring, it is worth remembering that Albert Einstein spent many years trying to invent a new form of refrigerator). In order to develop such next-generation technology, however, scientists first need to understand how and to what extent materials conduct heat. “Up to now, two different equations have been used for calculating thermal properties: one describes perfectly crystalline materials - that is, materials with highly ordered atomic structures - and the other one completely amorphous materials like glass, whose atoms do not follow an ordered pattern,” says Michele Simoncelli. These equations happened to work well in those special cases. “But between these two extremes lie a plethora of interesting cases, and neither equation worked - this is really where our contribution makes a profound difference”



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS
GOODFELLOW Confirms Membership In The BSI UK Graphene Group
AP&S Expands Management At Beginning Of 2021
DISCO's Completion Of New Building At Nagano Works Chino Plant
Panasonic Microelectronics Web Seminar
ITRI And DuPont Inaugurate Semiconductor Materials Lab
South Korean Point Engineering Chooses ClassOne’s Solstice S8 For Advanced Semiconductor Plating
TEL Introduces Episode UL As The Next Generation Etch Platform
K-Space Offers A New Accessory For Their In Situ Metrology Tools
SUSS MicroTec Opens New Production Facility In Taiwan
ASML Reports €14.0 Billion Net Sales
Will Future Soldiers Be Made Of Semiconductor?
Siemens And ASE Enable Next-generation High Density Advanced Package Designs
Can New Advances In CMOS Replace SCMOS Sensors In Biomedical Applications?
Onto Innovation Announces New Inspection Platform
Belgian Initiative For AI Lung Scan Analysis In Fight Against COVID-19 Goes European
EV Group Establishes State-of-the-art Customer Training Facility
Obducat Receives Order For Fully Automated Resist Processing Tool From A Customer In Asia
U.S. Department Of Defense Partners With GLOBALFOUNDRIES To Manufacture Secure Chips At Fab 8
Cadence Announces $5M Endowment To Advance Research
Imec Demonstrates 20nm Pitch Line/Space Resist Imaging With High-NA EUV Interference Lithography
New Plant To Manufacture Graphene Electronics
Changes In The Management Board Of 3D-Micromac AG
Tescan And 3D-Micromac Collaborate To Increase The Efficiency Of Failure Analysis Workflows
Tower Semiconductor Announced Program Creating An Integrated-Laser-on-Silicon Photonics Foundry Process

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event