+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems

News

CEA-Leti has announced the launch of an EU project to develop a novel class of algorithms, devices and circuits that reproduce multi-timescale processing of biological neural systems. The results will be used to build neuromorphic computing systems that can process efficiently real-world sensory signals and natural time-series data in real-time and to demonstrate this with a practical laboratory prototype.

The technology developed in the MeM-Scales project will enable novel solutions for the Internet of Things (IoT). In the future IoT, much computing volume will be offloaded from central servers and delegated to small controllers and intelligent sensors directly where their services are needed. These IoT systems must be able to work reliably, without interruptions and with very low energy demands. The project also will develop edge-computing processing systems for applications that do not require connectivity to the cloud.

Multi-timescale processing is inspired by neural processing in the nervous system, which occurs naturally over time scales ranging from milliseconds (axonal transmission) to seconds (spoken phrases) and much longer intervals (motor learning).

“The MeM-Scales project aims at lifting neuromorphic computing in analog spiking microprocessors to an entirely new level of performance,” said Elisa Vianello, manager of CEA-Leti’s AI program and the coordinator of the MeM-Scales project. “Our work is based on a dedicated commitment that novel hardware and novel computational concepts must co-evolve in a close interaction between nano-electronic device engineering, circuit-and-microprocessor design, fabrication technology and computing science: machine learning and nonlinear modeling.”

For physical substrates, novel memory and device technologies will be fabricated to support on-chip learning over multiple timescales for both synapses and neurons. Multi-timescale resistive memory technologies as well as thin-film transistor (TFT) technology will be used to enable timescales spanning up to nine orders of magnitude. On the side of computational theory, autonomous learning algorithms and architectures supporting computation over this wide range of timescales will be developed. These computational methods will be specifically tailored to cope with the low numerical precision, parameter drift, stochasticity and device mismatch that are inherent in analog nanoscale devices.

“These cross-disciplinary efforts will lead to the fabrication of an innovative hardware/software platform as a basis for future products combining extreme power efficiency with robust cognitive computing capabilities,” Vianello said. “This new kind of computing technology will open new perspectives; for instance, for high-dimensional distributed environmental monitoring, implantable medical-diagnostic microchips, wearable electronics and human-computer interfaces.”

The project brings together European specialists in neuromorphic engineering, an emerging interdisciplinary field that takes inspiration from biology, physics, mathematics, computer science, and engineering to design hardware/physical models of neural and sensory systems. The project’s name is short for Memory technologies with Multi-Scale time constants for neuromorphic architectures.

In addition to CEA-Leti, members include:

Imec

Interuniversitair Micro-Electronica Centrum

Belgium

Imec-NL

Stichting IMEC Nederland

Netherlands

IBM

IBM Research Gmbh

Switzerland

UZH

University of Zurich

Switzerland

CSIS

Consejo superior de Investigaciones Científicas

Spain

CNR

Consiglio Nazionale delle Ricerche

Italy

SynSense


Switzerland

UOG

Rijksuniversiteit Groningen

Netherlands

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: