+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Sand 9 piezoelectric MEMS timing product is first of its kind

News

Suited to Communications Infrastructure, Industrial and Military Applications, the firm's TM651 offers numerous advantages over quartz and electrostatic MEMS solutions for precision timing systems


Sand 9 says it is the first micro-electromechanical systems (MEMS) company to achieve the stringent low-noise, high-stability and harsh environmental requirements for precision timing in communications infrastructure, industrial and military applications.

As the first product based on Sand 9's patented Temperature Compensated MEMS Oscillator (TCMO) platform - which is claimed to feature the industry's highest-performance MEMS architecture - the TM651 offers system designers a better alternative to existing quartz and MEMS-based timing solutions.

The TM651 exceeds the performance of quartz in several ways, offering exceptional activity dip suppression, superior shock and vibration immunity, and outstanding electromagnetic interference (EMI) protection.

The end result is an extremely reliable timing source that enables better system design, quality, reliability and performance. The TM651 also provides 100 times better electromechanical coupling over conventional electrostatic MEMS architectures. This produces a significantly higher signal-to-noise (SNR) ratio, supporting far greater performance than any other MEMS solution.

"While every electronic application needs a timing device in order to function, quartz-based products have been historically slow to evolve," says Vince Graziani, CEO, Sand 9. "The TM651 is a major step forward in that evolution. It delivers greater precision and higher reliability than competitive solutions, which is critically important for large communications infrastructure systems, such as data centre switches, Ethernet communications and point-to-point radios - applications for which packet loss or loss of signal is simply not acceptable. These attributes are equally crucial for thousands of different high-value industrial and military applications."

Sand 9 is working closely with a number of leading analog semiconductor partners to provide reference designs for their synthesizer and timing products. Peter Real, vice president, High Speed Products and Technology, Analog Devices, comments, "As a leading supplier into communications infrastructure, industrial and military markets, Analog Devices is committed to exploring technologies that may improve the experience of our customers. Having initially invested in Sand 9 late last year, we are pleased to see them launch their first precision MEMS timing product."

About the TM651

The TM651 is a voltage controlled and temperature compensated MEMS oscillator with differential output, high output frequency, low jitter and high stability, making it ideally suited for precision timing applications. Its architecture consists of a piezoelectric MEMS resonator hermetically bonded to an RF ASIC containing oscillator and temperature compensation circuitry.

Technical Features and Benefits

    125 MHz high frequency with differential output - offers more than 50 percent lower current drain relative to comparable quartz products

    Ultra-precision RMS jitter at < 300 fs maximum from 12 kHz to 20 MHz -- includes industry-leading rise time/fall time edge rates at 250 ps maximum

    High stability of ±5 ppm stability over -40°C to +85°C

    Activity dip-free resonator, high noise and vibration immunity and low G-Sensitivity - guarantee jitter performance in rugged environments

    30,000 g shock survivability - ensures high reliability throughout product life cycle

Availability

The TM651 is currently sampling to lead customers, and will be ramping to mass production in Q1 2014. It is available in an industry-standard 3.2 mm x 2.5 mm x 1.2 mm LGA package.

 

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: