+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Imec and Holst Centre present a gas sensing platform for intuitive IOT

News

 

Imec and Holst Centre have developed a small NO2 sensor featuring a low power consumption in the mW range. The sensors have a low detection limit for NO2 (<10 ppb) and a fast response time. They are particularly well suited for air quality monitoring and serve as a solution to the increased demand for accurate local air quality monitoring for indoor and outdoor environments. The sensors are being tested in real-life situations, as part of an environmental monitoring platform.

While wearable technology that measures body parameters has become increasingly popular in recent years, the Intuitive Internet of Things (I2oT) is next on the horizon: connecting everybody and everything everywhere with data stored in the cloud, turning the massive amount of data in information to make the right decisions, to take the right actions exactly as we need or want. The I2oT is expected to manage the sustainability, complexity and safety of our world. It will increase our comfort and wellbeing in many ways.

Health issues resulting from poor air quality are a growing concern for consumers and accurate monitoring is becoming more and more in demand, for both outdoor and indoor environments.

Air quality is typically measured on just a few distinct locations per city, with specialized equipment. Many current gas sensors are large in size, have high power consumption and are too cost prohibitive to be implemented on a large scale for I2oT applications. Imec and Holst Centre have developed small, simple, low power and high quality autonomous sensors that wirelessly communicate with the environment and the cloud.

Imec and Holst Centre's NO2 sensors were integrated in the Aireas air quality network, a multiple sensor network in the city center of Eindhoven (the Netherlands). The purpose was to test -in actual outdoor conditions and long term- the stability of the sensors, and benchmark them against established reference sensors. The sensors are operational since early May 2015 and contribute with valuable outdoor sensor data since then. During traffic rush hours, the sensors detect a significant increase of NO2 concentration up to the health safety limits. 

Imec and Holst Centre are currently deploying a similar sensor network inside the Holst Centre building in Eindhoven to test the sensors for indoor air quality monitoring. This environmental monitoring platform today includes it proprietary NO2 sensor and commercial sensors for temperature, relative humidity and CO2. The measured levels can be monitored live, over the internet. In a next step, proprietary low-cost low-power sensors will be added for CO2, VOCs (Volatile Organic Compounds), Ozone, and particle matter.

The generated sensor data are transferred to the cloud, stored in a database and immediately available on (mobile) applications, explained Kathleen Philips, director of imec's perceptive systems for the intuitive internet of things R&D program. "Data fusion methodology and advanced algorithms enable us to combine data from different sensors such as temperature, several gasses, humidity, human presence detection and to derive contextual knowledge. This information contributes to a correct interpretation of the situation and helps us to take adequate actions to solve the problem. In this way, we have developed a context-aware intuitive sensing system."

Companies interested in early application validation and development for distributed IoT networks and/or in the innovative technology and circuits to realize them are invited to become a partner in our R&D program. IP can also be licensed.

 

Photo: NO2 sensor + network hardware for wireless sensor network

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: