+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Imec and Ghent University Demonstrate First Laser Arrays Monolithically Grown on 300mm Silicon Wafers


Imec and Ghent University present, for the first time, arrays of indium phosphide lasers monolithically integrated on 300mm silicon substrates in a CMOS pilot line. This breakthrough achievement, published in Nature Photonics, provides a path toward high-volume manufacturing of cost-effective photonic integrated circuits (PICs) with monolithically integrated laser sources. Such laser-powered PICs will revolutionize data transfer between future logic and memory chips.

Over the past few years, demand for data communication between servers in cloud datacenters has been growing exponentially, following strong growth in social networking, cloud computing and big data applications. Silicon photonics technology enables cost-effective manufacturing of fiber-optic transceivers, which in turn provides continued scaling of server and datacenter capacity with improved power efficiencies. However, wide-spread adoption of this technology has been hampered in part by the lack of monolithically integrated laser sources. The integration on silicon of efficient indium phosphide based light sources, currently driving long-range telecommunication networks, is known to be very challenging, owing to the large mismatch in crystal lattice constants between both materials.

Imec and Ghent University overcame these structural differences and largely suppressed the detrimental crystal defects that typically form at the interface between silicon and indium phosphide. Utilizing a production grade metal-organic vapor-phase epitaxial (MOVPE) growth reactor, indium phosphide semiconductor was selectively grown on silicon in a pre-patterned oxide template , realizing indium phosphide waveguide arrays across the entire 300mm substrate. Subsequently, periodic grating structures were etched in the top layer of these waveguides, providing the optical feedback required for laser operation.
Lasing operation was demonstrated for all tested devices consisting of an array of ten indium phosphide lasers. Typical lasing threshold powers of around 20mW were observed at room temperature under optical pumping. Lasing performance showed small variability along the array, illustrating the high material quality of the heteroepitaxial grown indium phosphide. In addition, accurate control on the distribution of lasing wavelengths in the array was demonstrated by modifying the grating parameters.

The newly demonstrated approach for integrating lasers with silicon has been carried out in imec's 300mm CMOS pilot line facility, therefore providing a path to large volume manufacturing. Ongoing research efforts focus on growing more complex layer stacks to enable electrical injection of the lasers and emission in the 1300nm wavelength range, along with integration with silicon based waveguide devices.

This work has been carried out as part of imec's industry affiliation program on Optical I/O, which targets the development of a scalable, silicon-based optical interconnect technology for high-bandwidth chip-level I/O. The work was also partly supported by the European Commission through an ERC starting grant awarded to Prof. D. Van Thourhout of Ghent University for research on Ultra Low Power Photonic ICs (ULPPIC). This five year project aims to develop novel active photonic devices with lower power consumption, for integration on next generation electronic and photonic ICs.

Imec's research and development work on Optical I/O is performed in cooperation with key partners in its core CMOS programs including Huawei, GlobalFoundries, Intel, Micron, Panasonic, Qualcomm, Samsung, SK Hynix, Sony and TSMC.

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: