+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
Technical Insight

Magazine Feature
This article was originally featured in the edition:
2022 Issue 2

Design and integration of photonic and electronic integrated circuits for high-speed wireline transceivers

With the exploding data-rate needs of current and future digital applications, ever higher requirements are being set on the wireline transceivers for inter and intra data center traffic. The focus is on increasing the capacity of these optical transceivers, while simultaneously increasing the integration density and energy efficiency with each new generation.

By Peter Ossieur, Program manager high-speed transceivers, imec.

Researchers at imec are taking on this double challenge by developing high-speed electronic and photonic integrated circuits for 100 to 130Gbaud transceivers, both for intensity-modulated direct-detect (IMDD) and for coherent optical transceivers. For a coherent transceiver, the specifications and functionality for the optics and electronics are much more demanding. The receiver DSP is also significantly more complex (compared to IMDD).

Scheme of an optoelectronic transceiver
For the optics, 100 to 130Gbaud operation requires at least 50 to 60GHz opto-electronic frontend bandwidth, both at the transmitter (modulator) and receiver (photodetector) side. Such bandwidths have been demonstrated with Indium Phosphate (InP)-based integrated optics, as well as with silicon photonics. Imec develops several silicon photonics platforms that include all the devices that are necessary for modulating and detecting optical signals. The same platform can also be used to realize passive devices such as silicon WDM filters and complex waveguide circuits. One component that until now was missing were electro-absorption modulators for the O-band. These are very compact modulators that don’t need any additional heater power unlike ring resonators. Relying on the quantum-confined stark effect, imec demonstrated such components, that could be modulated all the way up to 60Gb/s. Further work is ongoing to integrate these devices in the full platform.



Scheme of an optoelectronic transceiver

To scale the bandwidth even higher e.g. towards 200G baud operation, compound semiconductors such as Indium phosphate can be integrated onto silicon photonic or silicon nitride wafers. Another alternative is Barium Titanate (BTO). This is a very promising electro-optic material that can push the performance of modulators even further. Imec is looking at integrating BTO-based modulators into its 200 mm platform. An important focus is to adapt the BTO deposition techniques to volume scaling. Unlike other material systems such as LiNbO3, BTO can be brought into CMOS foundries, a critical advantage for manufacturing at scale.



Silicon photonic transmitter and receiver test structures processed on iSiPP200


In analog components such as drivers and receivers, electronics that can generate signals above 100Gbaud used to be the domain of compound semiconductors such as InP. Imec focusses on various circuit techniques to achieve these speeds using mainstream SiGe BiCMOS, which offers advantages in terms of the complexity of functionality that can be integrated and manufacturing throughput.

Silicon Photonic transmitter and receiver test structures processed on iSiPP200

As an example, imec researchers made a 4-channel linear Mach-Zehnder modulator driver array in which they used traveling wave amplifier circuits to achieve very high bandwidths (around 90GHz). It was codesigned with a silicon photonic dual-polarization, IQ modulator. Another example is a 4-channel linear transimpedance amplifier array, also using traveling wave amplifier techniques, and achieving bandwidths as high as 60GHz. The amplifier was codesigned with the balanced Ge photodetectors, integrated on the Silicon photonic platform.

Just as for the opto-electronic frontend, also for the DACs and ADCs at least 60GHz bandwidth is needed for 100 to 130Gbaud operation. Such ultra-high-speed ADCs and DACS can be realized using scaled CMOS such as 5- and 3nm. Next to the bandwidth, also a low power consumption and area are key. Imec is currently focussing on novel approaches for such high-speed wireline ADCs and DACs that overcome limitations in existing state-of-the-art. Designs of prototypes using 5nm CMOS are on-going to validate the new concepts in the lab.



Micro-transfer printing technique


On the receiver side, research towards energy-efficient 100Gbaud PAM-4 clock and data recovery circuitry compatible with the new ADC approach is on-going. Fractional oversampling is used in an effort to reduce the ADC sampling rate requirements. Feedforward and decision feedback equalization can be included to overcome impairments from the channel or bandwidth limitations on the optics.

To achieve the challenging specifications of next-generation high-speed transceivers, integration will obviously be key. This concerns both integration of chips and wafers from different material systems, each selected to provide optimum performance for the desired functionality, as well as integration to achieve the very high bandwidths necessary for beyond 100Gbaud operation. Heterogeneous integration is a key enabler to extend the functionality of imec’s silicon platform to integrate e.g. optical amplifiers and lasers. In collaboration with Sivers Photonics and ASM AMICRA, imec demonstrated the use of ultra-high precision alignment flip-chip processes to integrate InP optical amplifiers and lasers on its Silicon Photonic wafers. The alignment accuracy was better than 500nm and resulted in beyond 10mW waveguide coupled basic power.

Micro-transfer printing is another approach to realize heterogeneous integration. It allows to integrate small components from almost any source material to almost any target substrate. It uses MEMS etch techniques to almost fully separate small chiplets from the donor substrate. Then, an elastomeric stamp with small posts is used to break the chiplets free from the donor substrate. Next, the stamp is used to deposit the chiplets onto the target substrate. Both of these operations require careful selection of the movement speed of the stamp. With this technique it is possible to deposit thousands of devices in a single step. In the H2020 Caladan project, this technique is further developed and used to realize GaAs quantum dot lasers and high-speed SiGe BiCMOS electronics.

Micro-transfer printing technique
Scaling far beyond 100Gbaud, e.g. towards 200Gbaud, may require innovative approaches beyond conventional transceivers, in which the functionality of electronics is shifted further into the optical domain. One example of such a device recently demonstrated by imec is an optical equalizer. This device can be understood by viewing a Mach-Zehnder modulator as an FIR (finite impulse response) or tapped delay line filter in the electrical input, optical phase output domain. The weight of each tap is related to the length (and drive voltage) of a particular section of the Mach-Zehnder modulator, while the FIR filter’s delays correspond to delays from the optical waveguides.

Both of these can be readily manipulated: for example introducing a broadband time delay can be easily realized using a piece of optical waveguide. Even sign inversion (to realize more complex filter responses) is possibly using waveguide crossings. This approach can be used to trade for example drive voltage of the modulator for improved bandwidth or can be tailored to introduce particular peaking in the electro-optic frequency response.


About the author
Peter Ossieur received an M.Sc. Engineering degree in applied electronics and a Ph.D. in electrical engineering from Ghent University, Belgium, in 2000 and 2005, respectively. From 2005 to 2008, he was a Postdoctoral Fellow of the Fund of Scientific Research, Ghent University. During that time, his research was focused on 10Gbit/s burst-mode receivers and optoelectronics for automotive applications. In 2008, he became a part-time Professor of High-Frequency Electronics at the Faculty of Engineering, Ghent University.

In 2009, he joined the Photonic Systems Group, Tyndall National Institute and the Department of Physics, University College Cork, Cork, Ireland, where he became Senior Staff Researcher in April 2013. In this position he established an IC design group focusing on opto-electronic applications. In October 2017 he joined IDLab, an imec research group at Ghent Unviersity, as Senior Researcher and is currently Program Manager High-Speed Transceivers. He leads research activity focused on the development of high-speed analog and mixed-signal integrated circuits for photonic applications. He has (co-) authored 120 peer-reviewed papers, and holds several patents in the aforementioned research areas.


SPEA donates test equipment to university in Thailand
SONOTEC and S3 Alliance join at SEMICON Europa
Luminaries like high-NA EUV and curvilinear photomasks
SensiML and Silicon Technology join forces
TRI launches high-performance 3D AXI
SONOTEC and S3 Alliance join at SEMICON Europa
Marquee Semiconductor expands Indian presence
Micron begins Memory Manufacturing Fab
SiLC Technologies advances Machine Vision
Renesas partners with EdgeCortix
Gradiant acquires H+E Group
Webinar: Hydrogen Generation Industry Innovations to Meet Expanding North American Fab Hydrogen Requirements
EdgeCortix set to disrupt the edge market?
Evonetix places first DNA Synthesis Development Platform at Imperial College London
ASE launches Integrated Design Ecosystem
Cohu acquires Equiptest Engineering
Advantest wins 2022 Best Supplier Award from ASE Holdings
SEMI welcomes new board members
Advanced Energy breaks ground on flagship factory
GlobalFoundries opens new Malaysia office
TSMC reveals 'breakthrough' set to redefine the future of 3D IC
Delphon announce new VP, strategic marketing & business development
Particle Measuring Systems Announces Acquisition of EMS
Ireland begins high-volume production of Intel 4 Technology
Advantest to showcase latest test solutions
200 gigabits per second
KemLab Inc. applauds CHIPS Act's commitment
200mm fabs to reach record capacity by 2026
Governor DeSantis dedicates $50 million for workforce development
DOD names eight 'Microelectronics Commons' Hubs
TSMC accelerates renewable energy adoption
Mouser signs global agreement with MediaTek
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: