Loading...
News Article

200 gigabits per second

News

Imec’s new SiGe BiCMOS optical receiver allows to process ever-increasing amounts of datacenter traffic.

At the European Conference on Optical Communication (ECOC) taking place in Glasgow this week, a team of researchers from IDLab, an imec research group at Ghent University, Belgium, presents an optical receiver achieving a gross data rate of 200 Gbps. Their approach, combining a SiGe BiCMOS traveling-wave electronics integrated circuit and a Silicon Photonics Germanium photodetector, offers not only speed but also scalability, two prerequisites if we want to meet exploding data-rate needs.


The need for speed


From artificial intelligence to cloud computing and 5G: data-intensive applications are finding their way into different industries and many aspects of our daily lives. To keep up with today’s and especially tomorrow’s data-processing demands, data centers will need optical communication networks that perform at higher and higher speeds.


“Currently, the most performant optical datacom transceivers operate at speeds up to 800 Gbps, using for example 8 x 100 Gbps channels, but the field is envisioning doubling the channel capacity to 200 Gbps to reduce the transceiver complexity, cost and power consumption while improving manufacturing yield,” says Peter Ossieur, program manager for high-speed transceivers at imec’s IDLab and professor at Ghent University.


Fast and scalable


Ossieur is leading a team of researchers working towards high-speed integrated circuits for photonics applications. His team has now achieved a gross data rate of 200 Gbps by co-integrating a traveling-wave SiGe BiCMOS transimpedance amplifier with a silicon photonics Ge photodetector.


Aside from the speed, the use of mainstream SiGe BiCMOS makes the technology more scalable and therefore affordable. “An alternative to reach such speeds are InP electronics, which is a more expensive and less scalable technology,” says Ossieur. “SiGe BiCMOS allows us to integrate more functionalities and the chips can also be manufactured at higher volumes.”


The next generation


If optical transceivers are to keep up with exploding data rates, all building blocks need to handle higher speeds. The team demonstrates their result in a setup with a silicon photonics Ge photodetector from imec’s integrated silicon photonics platform (iSiPP), targeted to the telecom, datacom and medical diagnostics industries.


Joris Van Campenhout, fellow and program director optical I/O at imec, says the new optical receiver represents one of the many steps imec is taking to ready its silicon photonics platforms for demanding 200Gbps-and-beyond applications:


“These latest results represent one more data point showcasing the capability of imec’s silicon photonics platform (iSiPP) to operate at lane rates of 200Gbps, a key requirement for upcoming pluggable and co-packaged optics. .”


The work received support through European Union’s Horizon 2020 projects POETICS (No 871769) and NEBULA (No 871658) and will be presented at the European Conference on Optical Communication.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Adblocker Detected
Please consider unblocking adverts on this website