+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Tiny Chip-Based Device Performs Ultrafast X-Ray Manipulation

News

Optical microelectromechanical systems (MEMS) are tiny microchip-size devices that control light and communications. Separately, time-resolved X-ray probes are devices that help scientists study highly transient phenomena. These phenomena are short-lived and involve fast structural and functional changes. Scientists have now developed X-ray optics based on specially designed and fabricated MEMS that can harness extremely short X-ray pulses. The new devices are much smaller and lighter than conventional devices used to operate X-ray probes, and they could be essential for experiments on ultrafast phenomena at synchrotron and free-electron laser X-ray sources.

The new ultrafast optics-on-a-chip device will be orders of magnitude smaller and lighter than conventional devices used to manipulate X-ray probes. This will enable innovative X-ray research and applications. The device could help scientists study fast-evolving chemical, material, and biological processes. The results could aid in the development of efficient solar cells and batteries, advanced computer storage, and novel drugs. In this study, scientists demonstrated the device at a synchrotron facility. A fully developed version could be used with the X-ray generators found in hospitals and university laboratories. In these settings, the devices could support fast non-destructive diagnostics or precise dosage for radiation therapy.

The research team, consisting of scientists from the Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM), demonstrated the X-ray optics-on-a-chip device using the X-ray source at the APS. The APS and CNM are Department of Energy (DOE) scientific user facilities at Argonne National Laboratory. The device, designed at the CNM, measures only 250 micrometers and weighs just 3.5 micrograms. The extremely small size and low weight of the MEMS-based shutter allow it to oscillate at speeds equivalent to about one million revolutions per minute. The researchers leveraged this high speed and the MEMS material’s X-ray diffractive property to create an extremely fast X-ray shutter. The resulting ultrafast X-ray optics-on-a-chip can manipulate hard X-ray pulses exceeding 350 MHz, or 1,000 times higher than any mechanical modulator. Moreover, the devices' timing characteristics can be tuned for a host of dynamic X-ray instruments and applications, impossible with traditional optics that are typically one billion times more massive. The X-ray optics-on-a-chip devices set the stage for future dynamic and miniature X-ray optics for time-domain science and accelerator diagnostics and control, including wave-front manipulation, spectral dispersion, multiplexing, and pulse slicing.

The research was supported by DOE’s Office of Science, Basic Energy Sciences, Scientific User Facilities Division.

SPEA donates test equipment to university in Thailand
SONOTEC and S3 Alliance join at SEMICON Europa
Luminaries like high-NA EUV and curvilinear photomasks
SensiML and Silicon Technology join forces
TRI launches high-performance 3D AXI
SONOTEC and S3 Alliance join at SEMICON Europa
Marquee Semiconductor expands Indian presence
Micron begins Memory Manufacturing Fab
SiLC Technologies advances Machine Vision
Renesas partners with EdgeCortix
Gradiant acquires H+E Group
Webinar: Hydrogen Generation Industry Innovations to Meet Expanding North American Fab Hydrogen Requirements
EdgeCortix set to disrupt the edge market?
Evonetix places first DNA Synthesis Development Platform at Imperial College London
ASE launches Integrated Design Ecosystem
Cohu acquires Equiptest Engineering
Advantest wins 2022 Best Supplier Award from ASE Holdings
SEMI welcomes new board members
Advanced Energy breaks ground on flagship factory
GlobalFoundries opens new Malaysia office
TSMC reveals 'breakthrough' set to redefine the future of 3D IC
Delphon announce new VP, strategic marketing & business development
Particle Measuring Systems Announces Acquisition of EMS
Ireland begins high-volume production of Intel 4 Technology
Advantest to showcase latest test solutions
200 gigabits per second
KemLab Inc. applauds CHIPS Act's commitment
200mm fabs to reach record capacity by 2026
Governor DeSantis dedicates $50 million for workforce development
DOD names eight 'Microelectronics Commons' Hubs
TSMC accelerates renewable energy adoption
Mouser signs global agreement with MediaTek
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: