Loading...
News Article

Complete vascularisation of organoids on microfluidic chip

News

The Interdisciplinary Research Institute of Grenoble (CEA-Irig), CEA-Leti and fellow European and Canadian institutes and researchers have demonstrated the complete vascularization of organoids on a microfluidic chip at speeds and flow rates similar to blood’s, improving functional maturation and enabling their long-term survival.

Organoids, which are a 3D assembly of self-organizing cells capable of partially mimicking different physiological characteristics of an organ or tissue, are proving to be highly useful for evaluating the therapeutic efficacy of drugs or new molecules. But they must be vascularized to promote the exchange and transport of nutrients and oxygen, otherwise their maturation and growth are impaired. In vivo, this vascularization is ensured by blood flow.

By vascularizing organoids in vitro and maintaining them in culture for 30 days in a microfluidic chip, researchers observed significant improvement in their growth, maturation and physiological functions, virtually equivalent to those observed after xenotransplantation in mice. This significant technological advance in organoid R&D also enables production scaling.

The breakthrough was reported in the February issue of Nature Communications in the paper, “A microfluidic platform integrating functional vascularized organoids-on-chip”.

“The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants,” the paper explains. “Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups.”

The team’s innovative idea was first to develop a self-organizing vascular network within the chip and then trap an organoid containing its own endothelial cells within it. Both networks are self-connected and they enabled the organoid to be perfused in vitro, mimicking the blood system.

“This work opens new avenues to understand biological mechanisms in much more relevant models of human origin, as well as for drug discovery and drug development of novel biological therapies,” said Xavier Gidrol, CEA-Irig scientist and project supervisor. “Organoids have now entered the field of personalized medicine, regenerative medicine and pharmacological research.”

“We have demonstrated a never-reported, improved functional maturation of the vascularized organoid-on-chip by using a reliable microfluidic chip made of thermoplastics, which are well-known in the plastic industries and compatible with production scaling in the near future,” said Fabrice Navarro, a CEA-Leti scientist and co-author of the paper.

The project included scientists and research engineers from France, Austria and Canada.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: