+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
*/
News Article

E.U grants €11.6 Million to research Apnano materials' nanoparticles

ApNano Materials, Inc, announced that the European Union Commission has approved a grant of ¤11.6 million to develop new composite coatings and lubricants based on ApNano Materials' nanoparticles – the inorganic fullerenes (IF) – which have unique friction and wear reducing properties.

ApNano Materials, Inc, announced that the European Union Commission has approved a grant of ¤ 11.6 million to develop new composite coatings and lubricants based on ApNano Materials' nanoparticles – the inorganic fullerenes (IF) – which have unique friction and wear reducing properties. The four and half year, pan-European project, whose total budget is ¤ 18.9 million, is funded by the European Union's Sixth Framework Program for Nanotechnologies and Nanosciences, Knowledge based Multifunctional Materials and New Production Processes and Devices.

The project, named FOREMOST (Fullerene-based Opportunities for Robust Engineering: Making Optimised Surfaces for Tribology) will research new ways of introducing ApNano Materials' inorganic fullerene nanoparticles into surface coatings and lubricants. The new products will reduce friction and wear, save energy costs, extend operational life of mechanical parts, reduce maintenance and lower the environmental impact of a wide range of mechanical elements for the aerospace, automotive, power generation and manufacturing industrial sectors.

The FOREMOST project involves the establishment of a Pan-European consortium of 31 companies and research organisations. To include Rolls-Royce, Renault, EADS (European Aeronautic Defence and Space Company EADS N.V.), Goodrich Corporation, Ion Bond, FUCHS PETROLUB AG, Nanomaterials Ltd. (the fully owned Israeli R&D company of Apnano Materials), and leading European universities and research institutes. The project is co-ordinated by Fundation TEKNIKER, based in Eibar, northern Spain.

The fullerenes are soccer ball-like clusters of atoms, named after R. Buckminster Fuller, the architect of the geodesic dome appearing at the 1967 Montreal World Exposition. ApNano Materials' revolutionary nanoparticles are nested spheres of special metal inorganic compounds.

The inorganic fullerenes were first discovered in breakthrough work in nanotechnology performed at the Weizmann Institute of Science, Israel, by a group headed by Professor Reshef Tenne, currently the Head of the Institute's Department of Materials and Interfaces. Dr. Menachem Genut, ApNano Materials' CEO was a research fellow in the original research group which discovered the IF nanoparticles at the Weizmann Institute and first to synthesise the new material. Based on the inorganic fullerenes, ApNano Materials has developed the nanotechnology-based solid lubricant – NanoLub.

Recently, Professor Reshef Tenne was awarded the prestigious Materials Research Society (MRS) medal "for realising that nanoclusters of layered compound materials (e.g., MoS2, WS2) can be made to fold into hollow cage structures, in analogy to graphitic carbon. These structures, known as 'inorganic fullerenes,' constitute a materials class with exciting new properties.”

"The decision of European Union Commission is a recognition of NanoLub's potential to enhance the performances of machines and moving parts, saving energy and reducing pollution." said Dr. Menachem Genut, President and CEO of ApNano Materials. "The health aspects of Nanolub where extensively studied and were recently completed. The research clearly shows that NanoLub is non-toxic and can be considered as an environmentally friendly material."

"The special properties of the IF nanostructures has attracted significant interest from industry around the world," said Aharon Feuerstein, co-Founder, Chairman and CFO of ApNano Materials. “To date large quantity production of the IF has been achieved by the company at its facility in the Weizmann Science Park, Nes Ziona, Israel. Work is underway for a scaled-up semi-commercial unit to produce 100-200 kg/day which will be followed by a full industrial production facility to produce tons of material per day."

“NanoLub has been shown in numerous independent tests worldwide to reduce friction and wear significantly better than conventional lubricants, especially under extreme conditions such as very high loads” said Dr. Niles Fleischer, Vice President of Business Development and Vice President of Product Development of ApNano Materials. “NanoLub is used as an additive to enhance the lubricating properties of oils and greases, formulated as an anti-friction coating, and used for impregnating self-lubricating sintered metal parts.”
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: