News Article

DRIE Etched Silicon MEMS

New applications for deep reactive ion etch require exacting specifications for high rates and precision with excellent uniformity. As more complex MEMS devices go into production exacting methods are required to achieve the required manufacturing methods. Surface Technology Systems (STS) Chief Technology Officer Dr Leslie Lea explores some of the issues.

Deep reactive ion etching (DRIE) of silicon for MEMS applications is steadily moving from the R&D phase to full-scale commercial production. In addition, there are an increasing number of opportunities for implementing the same plasma processing techniques in advanced packaging schemes in high volume applications. As this occurs, exacting requirements for high rate, high precision etching with excellent uniformity over 200mm wafers are expected, and are of paramount importance, in providing high throughput and yield and thus a cost effective end product.

Continuous developments at STS resulted in the introduction of a new generation of silicon etch system, known as Pegasus, in mid-2005. Pegasus employs a revolutionary new de-coupled inductively coupled plasma (ICP) source design.

The focus with the Pegasus system has been to reduce the cost per die by enhancing both the throughput and the yield of the DRIE process.

The Bosch time-multiplexed or DRIE process, as exemplified by the STS Advanced Silicon Etch (ASE) package, consists of repeated etch and passivation steps [1, 2]. As the cycle of etch and passivation steps is repeated, the feature is etched into the wafer until the required depth is reached. Plasma process equipment to operate the ASE process uses the inductive coupling of RF power into the plasma by an antenna which is usually situated on the atmospheric side of a dielectric window that forms part of the plasma source region.

ICP processing equipment may be configured so that the plasma is formed in the same chamber in which the wafer is processed. Alternatively the plasma may be formed in a separate chamber (decoupled plasma source) and allowed to diffuse into a second, usually larger chamber, in which the wafer is located.

The use of a de-coupled plasma source brings a number of benefits:

1. The reduced volume of the source allows more efficient breakdown of the precursor gas because of the higher power density that can be delivered from the RF power supply.

2. The geometry and volume of the source region can be tailored so that the ions and neutral radicals exiting it can diffuse down to the wafer with the desired profiles to obtain high etch uniformity.

3. Additional means may be included between the de-coupled plasma source region and the chamber in which the wafer is processed in order to alter the balance between numbers of ions and neutral radicals reaching the wafer to control selectivity to mask and/or ion damage to feature profiles.

For etching of silicon using their ASE process, STS manufactures both conventional ICP plasma processing tools for greater flexibility in less demanding applications and two different advanced de-coupled plasma sources for applications requiring enhanced etch rates, selectivity and manufacturing uniformity.

A conventional de-coupled source plasma processing tool forms the plasma in a smaller chamber by RF power coupled by an antenna through a dielectric window. The dielectric window is often a cylindrical tube located on the same axis as a cylindrical chamber in which the wafer is processed (Figure 1).

Ions and radicals diffuse from the smaller chamber into the chamber in which the silicon wafer is processed. Because of the differences in deflection or loss probability between ions, electrons and neutral radicals when encountering electric or magnetic fields and material surfaces such as the chamber walls, the radial profiles of the charged species may differ from the radial profiles of the neutral radicals in the vicinity of the wafer.

For the conventional de-coupled plasma processing tool, the spatial profile of both ions and neutral radicals in the vicinity of the wafer will usually be ‘centre-high', decreasing radially towards the walls of the chamber. The density profile variation of the ions will usually be more extreme than for the radicals, because on encountering the walls or an object within the chamber, ion and electron pairs have a high probability of recombining, while neutral radicals may survive a few reflections. When etching of silicon with a reasonable exposed silicon area, as defined by the mask, more radicals need to be present near the centre to achieve a near constant chemical etch rate across the wafer.

This is because in the centre each feature is surrounded by other features, while towards the edge there are less features outside of the radial position. The conventional de-coupled plasma processing tool can often quite reasonably satisfy this criterion.

Throughput improvement
With the introduction of Pegasus, throughput is improved by a significant enhancement in the etch rate of the DRIE process, coupled with integration of the process module to the latest wafer handling automation. Silicon etch rates exceeding 50µm/min for a 1% exposed area have been observed using the Pegasus source with the ASE process, and at a more realistic exposed area of around 10%, etch rates of more than 30µm/min can be achieved.

Improving Yields
Device yield is optimised by improving absolute etch depth uniformity and by reducing trench tilting artefacts that are observed with conventional de-coupled ICP plasma sources. As wafer size increases, the effects of any nonuniformity in the plasma become more pronounced.

For high etch uniformity it is necessary for the appropriate spatial profile of neutral radicals reaching the wafer to match the silicon's loading characteristics. In order to ensure precise control of the etch direction, the spatial density profile of ions above the wafer needs in general to be different from that of the radicals.

STS has developed a technique that controls the spatial profiles of the two species independently, enabling very high etch rate uniformity and feature profile control over 200mm wafers.

When combined with STS' patented technologies for ramping the magnitude of parameter values during an etch and for providing precise control of notching at silicon to insulator surfaces, the new uniformity control technique is extremely powerful.

Experiments show that while it is desirable to have a reasonably uniform thickness of the passivation layer across the wafer, it is not essential provided that the ion bombardment can remove the passivation from all areas in a similar time so that the overall etch rate determined by the chemical reaction of the neutral radicals with the silicon is similar across the wafer.

Figure 3 illustrates that the spatial profile of the ion density above the wafer for a conventional de-coupled plasma source tends to be quite ‘centre-high', which can cause the passivation layer to be sputtered away more quickly towards the wafer centre, increasing the risk of higher etch rate at the wafer centre than towards the edge. For a conventional de-coupled plasma source the ion density profile above the wafer is ‘centrehigh', thus the Debye length, and therefore the thickness of the sheath between the plasma and the wafer, will be less near the centre of the wafer than towards the edge. This non-uniformity of the sheath thickness across the wafer is likely to lead to a steering of ions as they are accelerated to the wafer. In the centre of the wafer they will move perpendicular to the wafer surface, but towards the edge of the wafer they may move in such a way that they impact the wafer at an angle to the perpendicular.

For features etched using the Bosch timemultiplexed etch process in conventional decoupled plasma sources, the feature may be etched perpendicular to the wafer surface near the centre of the wafer, but at a significant angle to the vertical near the edge of the wafer, with the feature tilting outwards (from wafer centre) as it is etched deeper into the wafer (Figure 4).

An ideal plasma processing tool should have the capability of delivering neutral radicals to the wafer surface with a density profile to match the loading effect of the exposed area of silicon so that the etch rate is very close to constant at all points on the wafer. The tool should also be capable of providing a near uniform ion density just above the wafer surface so that the sheath is of the same thickness across the wafer and ions are accelerated perpendicular to the wafer surface.

The Pegasus source has shown that its novel design combined with a number of techniques provides higher and spatially uniform silicon etch rates while minimising feature tilting.

[1] F. Laermer and A. Schilp., Patent DE4241045, granted to ROBERT Bosch GmbH.
[2] J.K. Bhardwaj and H. Ashraf, SPIE Micromachining and Microfabrication Process Technology, Vol 2639, pp224-233 (1995).

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.


SUSS MicroTec Opens New Production Facility In Taiwan
South Korean Point Engineering Chooses ClassOne’s Solstice S8 For Advanced Semiconductor Plating
Siemens And ASE Enable Next-generation High Density Advanced Package Designs
Imec Demonstrates 20nm Pitch Line/Space Resist Imaging With High-NA EUV Interference Lithography
TEL Introduces Episode UL As The Next Generation Etch Platform
DISCO's Completion Of New Building At Nagano Works Chino Plant
Onto Innovation Announces New Inspection Platform
K-Space Offers A New Accessory For Their In Situ Metrology Tools
ASML Reports €14.0 Billion Net Sales
Tower Semiconductor Announced Program Creating An Integrated-Laser-on-Silicon Photonics Foundry Process
Belgian Initiative For AI Lung Scan Analysis In Fight Against COVID-19 Goes European
EV Group Establishes State-of-the-art Customer Training Facility
Obducat Receives Order For Fully Automated Resist Processing Tool From A Customer In Asia
Will Future Soldiers Be Made Of Semiconductor?
Cadence Announces $5M Endowment To Advance Research
Changes In The Management Board Of 3D-Micromac AG
AP&S Expands Management At Beginning Of 2021
Panasonic Microelectronics Web Seminar
Can New Advances In CMOS Replace SCMOS Sensors In Biomedical Applications?
GOODFELLOW Confirms Membership In The BSI UK Graphene Group
Tescan And 3D-Micromac Collaborate To Increase The Efficiency Of Failure Analysis Workflows
U.S. Department Of Defense Partners With GLOBALFOUNDRIES To Manufacture Secure Chips At Fab 8
New Plant To Manufacture Graphene Electronics
ITRI And DuPont Inaugurate Semiconductor Materials Lab

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
{taasPodcastNotification} Array
Live Event