+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
*/
News Article

Carbon nanotube tool selected for nanocomposites and mechanical sensor research

News
UK based, Surrey NanoSystems has won a major order for its carbon nanotube growth tool from Italian, advanced technologies research institute ITA.
UK based Surrey NanoSystems has won a major order for its carbon nanotube growth tool from Italian, advanced technologies research institute ITA.ITA selected the NanoGrowth tool for its ability to repeatedly grow defined carbon nanotube configurations, and to grow materials at low temperatures. The institute will use the equipment to research carbon nanotube based nanocomposites and mechanical sensors, for medical and aerospace applications.The tool configuration chosen includes a large range of materials processing modules, to support ITA's diverse research programs. In addition to the NanoGrowth tool's core CVD (chemical vapour deposition) and PECVD (plasma-enhanced CVD) nanomaterial growth capabilities, Surrey NanoSystems will fit modules for catalyst delivery, ion etching and thin-film deposition. This wide-ranging capability will allow ITA researchers to grow precision single- and multi-walled nanotube structures and silicon nanowires, as well as being able to dope, etch and deposit silicon.The tool will be delivered in August 2007. ITA will become a lead user for Surrey NanoSystems, and in addition to the provision of equipment, the two organisations have signed a three-year development partnership to share intellectual property. Surrey NanoSystems is developing advanced processing templates to support the fabrication of carbon nanotube and silicon nanowire structures for commercial manufacture of semiconductor devices and related electronics applications. ITA will receive these recipes in advance of launch, in return for beta testing. These test bed services - which Surrey NanoSystems will also operate with other partners worldwide - is a major element of the company's strategy to ensure that its processing recipes are both field proven and highly repeatable from tool to tool.Carbon nanotube research at ITA will be coordinated by Dr Giulia Lanzara. Working with Surrey NanoSystems to specify the tool configuration, Dr Lanzara explains: "I've had a lot of experience growing carbon nanotubes using a horizontal quartz tube furnace. For ITA's forthcoming research projects into nanocomposites and mechanical sensors we need to be able to repeatedly grow specific nanotube configurations. The architecture of this tool has been specifically designed to produce repeatable results. Along with excellent expansion capability, NanoGrowth gives us a platform to develop our ideas and create commercial-grade automated processes.""We are delighted to win such an influential order, and are especially pleased with technical feedback that we will receive from ITA, which will help us to bring further processing modules and techniques to market more quickly, and with the assurance of cross-platform repeatability," adds Ben Jensen, CTO of Surrey NanoSystems.The NanoGrowth 1000n tool has been purpose-designed for nanomaterial fabrication. Precision fabrication and configuration repeatability principles have been at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among the tool's features are an ultra-high purity gas delivery system and flexible closed-loop controls that allow users to define target tolerances to achieve a high level of repeatability during all phases of processing.
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: