+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

All the electronics that's fit to print

News

New technology allows you to print electronic devices and researchers have used this technique to build small mechanical devices.



New technology allows you to print electronic devices in the same way your inkjet printer prints a document or photo. Now researchers at Palo Alto Research Centre have used this technique to build a portable X-ray imager and small mechanical devices.


 a) Electonic inks for printing. (b) Inkjet printed shift register circuit. (c) Printed flexible imager.

Credit: T.Ng/PARC


"It's a demonstration of how far this technology can go," said Tina Ng of the Palo Alto Research Center. She will describe these devices at the AVS 61st International Symposium & Exhibition, being held Nov. 9-14, 2014, in Baltimore, Md.

Making electronics on conventional silicon wafers can be costly and time consuming. Traditional photolithography methods, Ng explained, are complex. You first have to deposit layers of material, place a stencil-like mask on it, and then shine ultraviolet light to etch away the exposed material. You then repeat the process to create the patterns needed to form electronic circuits and devices.

But in the last ten years, researchers have been developing ways to deposit patterns of metals, semiconductors and other material directly, just like how a printer deposits patterns of ink. The materials are dissolved in a liquid solution, which can then be printed on a variety of substrates, such as plastic, paper and even fabric. When the "ink" dries, the material remains.

As a demonstration of this technology, Ng and her colleagues built a digital X-ray sensor. Using printing techniques, the researchers fabricated flexible X-ray imager arrays on plastic films that are much more portable than the behemoths at your dentist's office. Such a device could be used by doctors in the field, serve as small security scanners or even help soldiers identify bombs in battle.

The researchers are also working on printing an actuator, a simple mechanical device. Unlike typical silicon actuators, the printable actuator is based on solution-processed organic materials and behaves like "artificial muscles." While they haven't developed specific applications for such an actuator, Ng said, it could be used in conjunction with photo imagers to make adaptive optical parts that tune focal distance, or to make moving mirrors that redirect light beams.

This printing technique won't work for producing the high-end silicon chips in your computers and phones, Ng said. Instead, "we're going for more high-volume, simple but useful systems." In the future, for example, you might be able to print sensors onto clothing or some other device attached to the skin to monitor vital signs -- and alert a doctor in case of emergency. Some researchers have also been printing devices to make flexible solar cells; imagine wearing a jacket that doubles as a solar panel. Another possibility, Ng said, is to print flexible antennae for wireless communication.

Authors of this presentation are affiliated with Palo Alto Research Center (PARC), a Xerox Company, in California; Simon Fraser University in Canada; and Soonchunhyang University in South Korea.

Sono-Tek to demonstrate SPT200 Photoresist Coating
Microelectronics industry education and workforce challenges explored
PEMTRON to spotlight semiconductor inspection solutions
OMNIVISION introduces 'smallest camera module'
Socionext joins the Global Semiconductor Alliance
Imec unveils CMOS-based 56Gb/s zero-IF D-band beamforming transmitter
Flip chip technology market to reach $45.22 billion in 2032
EV Group and Fraunhofer IZM-ASSID expand partnership
Company founder Ayhan Busch celebrates her 90th birthday
Moxa 5G expert to discuss Private 5G Networks
Nordson Test & Inspection to showcase Advanced Semiconductor Technologies
Greene Tweed extends global reach
5G chipset market worth $92.billion in 2030
KYZEN to showcase Multi-Process Power Module Cleaner
Fractilia has introduced FAME OPC for improved OPC modeling
Critical Manufacturing and RoviSys expand strategic alliance
Mouser Electronics and Analog Devices publish Collaborative eBooks
Infineon introduces Product Carbon Footprint data for customers
Alphawave Semi collaborates with Arm
VIS and NXP to establish fab JV
Infineon drives decarbonisation and digitalisation
The future of flexible technology?
CEA-Leti reports three-layer integration breakthrough
Nidec Advance Technology signs agreement with Synergie Cad Group
Flip-chip die bonder promises speed improvement
Raspberry Pi selects Hailo to enable advanced AI capabilities
Gartner forecasts worldwide AI chips revenue to grow 33% in 2024
Imec demonstrates die-to-wafer hybrid bonding with a Cu interconnect pad pitch of 2µm
Doubling throughput of layer transfer technology
Accelerating lab to fab
Advanced packaging in the spotlight
ASML and imec open joint High NA EUV Lithography Lab
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: