+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

In search of new materials

News
Researchers have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration and radiofrequency shielding in technology from portable electronics to coaxial cables.

Making a paper airplane in school used to mean trouble. Today it signals a promising discovery in materials science research that could help next-generation technology -like wearable energy storage devices- get off the ground. Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration and radiofrequency shielding in technology from portable electronics to coaxial cables.

Finding or making a thin material that is useful for holding and disbursing an electric charge and can be contorted into a variety of shapes, is a rarity in the field of materials science. Tensile strength -the strength of the material when it is stretched- and compressive strength -its ability to support weight- are valuable characteristics for these materials because, at just a few atoms thick, their utility figures almost entirely on their physical versatility.

"Take the electrode of the small lithium-ion battery that powers your watch, for example, ideally the conductive material in that electrode would be very small -so you don't have a bulky watch strapped to your wrist- and hold enough energy to run your watch for a long period of time," said Michel Barsoum, PhD, Distinguished Professor in the College of Engineering. "But what if we wanted to make the watch's wristband into the battery? Then we'd still want to use a conductive material that is very thin and can store energy, but it would also need to be flexible enough to bend around your wrist. As you can see, just by changing one physical property of the material -flexibility or tensile strength- we open a new world of possibilities."

This flexible new material, which the group has identified as a conductive polymer nanocomposite, is the latest expression of the ongoing research in Drexel's Department of Materials Science and Engineering on a family of composite two-dimensional materials called MXenes.

This development was facilitated by collaboration between research groups of Yury Gogotsi, PhD, Distinguished University and Trustee Chair professor in the College of Engineering at Drexel, and Jieshan Qiu, vice dean for research of the School of Chemical Engineering at Dalian University of Technology in China. Zheng Ling, a doctoral student from Dalian, spent a year at Drexel, spearheading the research that led to the first MXene-polymer composites. The researchat Drexel was funded by grants from the National Science Foundation and the U.S. Department of Energy.

The Drexel team has been diligently examining MXenes like a paleontologist carefully brushing away sediment to unearth a scientific treasure. Since inventing the layered carbide material in 2011 the engineers are finding ways to take advantage of its chemical and physical makeup to create conductive materials with a variety of other useful properties.

One of the most successful ways they've developed to help MXenes express their array of abilities is a process, called intercalation, which involves adding various chemical compounds in a liquid form. This allows the molecules to settle between the layers of the MXene and, in doing so, alter its physical and chemical properties. Some of the first, and most impressive of their findings, showed that MXenes have a great potential for energy storage.

 

To produce the flexible conductive polymer nanocomposite, the researchers intercalated the titanium carbide MXene, with polyvinyl alcohol (PVA) -a polymer widely used as the paper adhesive known as school or Elmer's glue, and often found in the recipes for colloids such as hair gel and silly putty. They also intercalated with a polymer called PDDA (polydiallyldimethylammonium chloride) commonly used as a coagulant in water purification systems.

"The uniqueness of MXenes comes from the fact that their surface is full of functional groups, such as hydroxyl, leading to a tight bonding between the MXene flakes and polymer molecules, while preserving the metallic conductivity of nanometer-thin carbide layers. This leads to a nanocomposite with a unique combination of properties," Gogotsi said.

The results of both sets of MXene testing were recently published in the Proceedings of the National Academy of Sciences. In the paper, the researchers report that the material exhibits increased ability to store charge over the original MXene; and 300-400 percent improvement in strength.

"We have shown that the volumetric capacitance of an MXene-polymer nanocomposite can be much higher compared to conventional carbon-based electrodes or even graphene," said Chang Ren, Gogotsi's doctoral student at Drexel. "When mixing MXene with PVA containing some electrolyte salt, the polymer plays the role of electrolyte, but it also improves the capacitance because it slightly enlarges the interlayer space between MXene flakes, allowing ions to penetrate deep into the electrode; ions also stay trapped near the MXene flakes by the polymer. With these conductive electrodes and no liquid electrolyte, we can eventually eliminate metal current collectors and make lighter and thinner supercapacitors."

The testing also revealed hydrophilic properties of the nanocomposite, which means that it could have uses in water treatment systems, such as membrane for water purification or desalinization, because it remains stable in water without breaking up or dissolving.

In addition, because the material is extremely flexible, it can be rolled into a tube, which early tests have indicated only serves to increase its mechanical strength. These characteristics mark the trail heads of a variety of paths for research on this nanocomposite material for applications from flexible armor to aerospace components. The next step for the group will be to examine how varying ratios of MXene and polymer will affect the properties of the resulting nanocomposite and also exploring other MXenes and stronger and tougher polymers for structural applications.

5G chipset market worth $92.billion in 2030
KYZEN to showcase Multi-Process Power Module Cleaner
Fractilia has introduced FAME OPC for improved OPC modeling
Critical Manufacturing and RoviSys expand strategic alliance
Mouser Electronics and Analog Devices publish Collaborative eBooks
Infineon introduces Product Carbon Footprint data for customers
Alphawave Semi collaborates with Arm
VIS and NXP to establish fab JV
Infineon drives decarbonisation and digitalisation
The future of flexible technology?
CEA-Leti reports three-layer integration breakthrough
Nidec Advance Technology signs agreement with Synergie Cad Group
Flip-chip die bonder promises speed improvement
Raspberry Pi selects Hailo to enable advanced AI capabilities
Gartner forecasts worldwide AI chips revenue to grow 33% in 2024
Imec demonstrates die-to-wafer hybrid bonding with a Cu interconnect pad pitch of 2µm
Doubling throughput of layer transfer technology
Accelerating lab to fab
Advanced packaging in the spotlight
ASML and imec open joint High NA EUV Lithography Lab
TRI to drive AI innovation, working with NVIDIA
AlixLabs receives 2,5 MSEK grant for green semiconductor production
Applied Research Initiative advances Arizona’s semiconductor ecosystem
ERS electronic releases fully automatic Luminex machines with PhotoThermal debonding and wafer cleaning capability
Photonic Integrated Circuits benefit from AI data centre demand
SIA applauds CHIPS Act incentives for Polar Semiconductor
Mobix Labs completes RaGE Systems acquisition
ROHM and Nanjing SemiDrive Technology jointly develop reference design
PCIM Europe 2024: Extensive program provides new highlights
Emerson continues to invest in NI Test & Measurement products
Infineon reveals roadmap for energy-efficient power supply units in AI data centres
£3m grant for Glasgow chip research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: