+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Thin-Film Hybrid Oxide-Organic Microprocessor


Holst Centre, imec and their partner Evonik have realized a general-purpose 8-bit microprocessor, manufactured using complementary thin-film transistors (TFTs) processed at temperatures compatible with plastic foil substrates (250°C). The new "hybrid" technology integrates two types of semiconductors"”metal-oxide for n-type TFTs (iXsenic, Evonik) and organic molecules for p-type TFTs"”in a CMOS microprocessor circuit, operating at unprecedented for TFT technologies speed"”clock frequency 2.1kHz. The breakthrough results were published online in Scientific Reports, an open access journal from the publisher of Nature.

Low temperature thin-film electronics are based on organic and metal-oxide semiconductors. They have the potential to be produced in a cost effective way using large-area manufacturing processes on plastic foils. Thin-film electronics are, therefore, attractive alternatives for silicon chips in simple IC applications, such as radio frequency identification (RFID) and near field communication (NFC) tags and sensors for smart food packaging, and in large-area electronic applications, such as flexible displays, sensor arrays and OLED lamps.

Holst Centre's (imec and TNO) research into thin-film electronics aims at developing a robust, foil-compatible, high performance technology platform, which is key to making these new applications become a reality.

The novel 8-bit microprocessor performs at a clock frequency of 2.1 kHz.

It consists of two separate chips: a processor core chip and a general-purpose instruction generator (P2ROM). For the processor core chip, a complementary hybrid organic-oxide technology was used (p:n ratio 3:1). The n-type transistors are 250°C solution-processed metal-oxide TFTs with typically high charge carrier mobility (2 cm2/Vs).

The p-type transistors are small molecule organic TFTs with mobility of up to 1 cm2/Vs. The complementary logic allows for a more complex and complete standard cell library, including additional buffering in the core and the implementation of a mirror adder in the critical path.

These optimizations have resulted in a high maximum clock frequency of 2.1kHz. The general-purpose instruction generator or P2ROM is a one-time programmable ROM memory configured by means of inkjet printing, using a conductive silver ink. The chip is divided into a hybrid complementary part and a unipolar n-TFT part and is capable of operating at frequencies up to 650 Hz, at an operational voltage of Vdd=10V.


Sono-Tek to demonstrate SPT200 Photoresist Coating
Microelectronics industry education and workforce challenges explored
PEMTRON to spotlight semiconductor inspection solutions
OMNIVISION introduces 'smallest camera module'
Socionext joins the Global Semiconductor Alliance
Imec unveils CMOS-based 56Gb/s zero-IF D-band beamforming transmitter
Flip chip technology market to reach $45.22 billion in 2032
EV Group and Fraunhofer IZM-ASSID expand partnership
Company founder Ayhan Busch celebrates her 90th birthday
Moxa 5G expert to discuss Private 5G Networks
Nordson Test & Inspection to showcase Advanced Semiconductor Technologies
Greene Tweed extends global reach
5G chipset market worth $92.billion in 2030
KYZEN to showcase Multi-Process Power Module Cleaner
Fractilia has introduced FAME OPC for improved OPC modeling
Critical Manufacturing and RoviSys expand strategic alliance
Mouser Electronics and Analog Devices publish Collaborative eBooks
Infineon introduces Product Carbon Footprint data for customers
Alphawave Semi collaborates with Arm
VIS and NXP to establish fab JV
Infineon drives decarbonisation and digitalisation
The future of flexible technology?
CEA-Leti reports three-layer integration breakthrough
Nidec Advance Technology signs agreement with Synergie Cad Group
Flip-chip die bonder promises speed improvement
Raspberry Pi selects Hailo to enable advanced AI capabilities
Gartner forecasts worldwide AI chips revenue to grow 33% in 2024
Imec demonstrates die-to-wafer hybrid bonding with a Cu interconnect pad pitch of 2µm
Doubling throughput of layer transfer technology
Accelerating lab to fab
Advanced packaging in the spotlight
ASML and imec open joint High NA EUV Lithography Lab
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: