+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Ultra-sensitive sensor detects individual electrons

News

Scientists have created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has been dubbed the 'gate sensor' and could be applied in quantum computers of the future to read information stored in the charge or spin of a single electron.


A Spanish-led team of European researchers at the University of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has been dubbed the 'gate sensor' and could be applied in quantum computers of the future to read information stored in the charge or spin of a single electron.

In the same Cambridge laboratory in the United Kingdom where the British physicist J.J. Thomson discovered the electron in 1897, European scientists have just developed a new ultra-sensitive electrical-charge sensor capable of detecting the movement of individual electrons.

"The device is much more compact and accurate than previous versions and can detect the electrical charge of a single electron in less than one microsecond," M. Fernando González Zalba, leader of this research from the Hitachi Cambridge Laboratory and the Cavendish Laboratory, said.

Details of the breakthrough have been published in the journal Nature Communications and its authors predict that these types of sensors, dubbed 'gate sensors', will be used in quantum computers of the future to read information stored in the charge or spin of a single electron.

"We have called it a gate sensor because, as well as detecting the movement of individual electrons, the device is able to control its flow as if it were an electronic gate which opens and closes," explains González Zalba.

The researchers have demonstrated the possibility of detecting the charge of an electron with their device in approximately one nanosecond, the best value obtained to date for this type of system. This has been achieved by coupling a gate sensor to a silicon nanotransistor where the electrons flow individually.

In general, the electrical current which powers our telephones, fridges and other electrical equipment is made up of electrons: minuscule particles carrying an electrical charge travelling in their trillions and whose collective movement makes these appliances work.

However, this is not the case of the latest cutting-edge devices such as ultra-precise biosensors, single electron transistors, molecular circuits and quantum computers. These represent a new technological sector which bases its electronic functionality on the charge of a single electron, a field in which the new gate sensor can offer its advantages.


 


Biden-Harris Administration unveils preliminary terms with GlobalWafers
UK-India Technology Security Initiative launches in New Delhi
Chiplets increase performance and lower cost
Physik Instrumente opens Technology Hub in Southwest Germany
42 Technology partners with INFICON
Imec achieves record-low charge noise for Si MOS quantum dots
Infineon and Amkor sign MoU
Lattice extends Small FPGA portfolio
Nearfield Instruments secures €135 million in funding round
Experts urge EU to increase investment in photonics or risk falling behind China
Reality AI Explorer Tier offers free AI/ML development access
AEM introduces new generation of Automated Burn-In Systems
NPUs are emerging as the main rival to Nvidia’s AI dominance, says DAI Magister
Camtek receives a $20M order from a Tier-1 OSAT
Free samples of every STMicroelectronics NPI IC available from Anglia
NY CREATES and SEMI sign MoU
Major government investment to 'propel' Canada
QuickLogic announces $5.26 million contract award
ASNA and Athinia collaborate
Global sales forecast to reach record $109 billion in 2024
AMD to acquire Silo AI
Nanotronics unveils 'groundbreaking' Gen V AI Model
Aitomatic unveils SemiKong
Biden-Harris Administration reveals first CHIPS for America R&D facilities and selection processes
Collaboration to produce cutting-edge AI accelerator chips
Oxford Ionics breaks global quantum performance records
Adeia wins ECTC Award for paper on “Fine Pitch Die-to-Wafer Hybrid Bonding”
AEM introduces new generation of Automated Burn-In Systems
Sydney council forges vital semiconductor agreement
EV Group's EVG880 LayerRelease wins 2024 Best of West
Biden-Harris Administration to invest up to $1.6 billion
Cyient sets up subsidiary for semiconductor business
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: