Loading...
News Article

Report analyses advanced packaging market

News

Dr Yu-Han Chang, Senior Technology Analyst at IDTechEx, reports on development trends and growth drivers for the advanced semiconductor packaging technologies market.

Advanced semiconductor packaging technologies are crucial due to the slowing of Moore's law and rising costs of monolithic Si IC development and manufacturing. Initially, components were individually packaged and integrated at the PCB board level, but as devices become smaller and require higher processing capabilities, component integration needs to be pushed beyond board level. Package level integration was the first advancement, followed by wafer level integration, which provides at least ten times higher connection density, a smaller footprint suitable for size-sensitive applications, and superior performance.

Wafer level integration encompasses fan-in, core fan-out, high-density fan-out, 2.5D IC, and 3D IC packaging technologies. However, only those with a bumping pitch size of less than 100 µm are considered as "advanced" semiconductor packaging technologies. This includes high-density fan-out, 2.5D IC, and 3D IC packaging technologies.

Bump pitch size of different packaging technologies offered by different companies. Source: IDTechEx

The shift from 2.5D hybrid integration to complete 3D vertical integration is crucial for future data-centric applications, and in this article, we will focus on this transition.

The primary challenge in the shift from 2.5D to 3D is to scale the size of the bumping pitch. In a 2.5D IC package, the bump pitch size ranges between 25 µm and 40 µm, depending on the interposer material. However, for a 3D stacking package, the bump size must be scaled down to a single digit µm or even lower down to below 1 µm dimension. TSMC has reported that the bump pitch for stacking N7/N6 chips is 9 µm and 6 µm for N5 chips stacking. This is expected to further decrease to 4.5 µm for N3 chip stacking and continue to decline for future generations of ICs. Stacking two chips with a small bump pitch size poses a significant challenge, as high-precision alignment on bonding dielectric materials must be achieved, especially at low temperatures. Additionally, proper control of Cu filling materials is necessary to prevent overflow during the bonding process. Furthermore, thermal management becomes a critical issue for packages with small bumping scales, which necessitates the consideration of package designs that enable better heat transmission and possible liquid cooling technologies.

The Growth Drivers

IDTechEx has identified four main application areas for advanced semiconductor packaging: high-performance computing (HPC) applications/data centers, communication networks, autonomous cars, and consumer electronics. The increasing demand for data processing is the primary driving force behind the growth in these application areas. However, each application has specific requirements that necessitate different advanced semiconductor packaging technologies.

For HPC applications/data centers, the priority is to provide superior data processing capabilities, making 2.5DIC technologies that use Si interposer or Si bridge the preferred option, despite their higher cost. In contrast, consumer electronics such as smartphones or smartwatches focus on miniaturization and cost, with organic-based packaging technologies being the top choice.

In 5G and beyond communication, the key challenge is transmission loss. Hence, advanced packaging technologies are used to bring the antenna closer to the RF IC chip, minimizing transmission loss. "Antenna-in-package (AiP)" is currently the most viable option for 5G mmWave, while "Antenna on chip/wafer (AoP)" is still under intense development to reduce costs.

For future autonomous vehicles, heterogeneous integration of CPUs and other components, such as HBM and reliable power delivery systems, will create new opportunities for advanced semiconductor packaging and innovation.

The expansion of data processing is the unifying growth factor for all these applications. However, as the requirements for each application area differ, advanced semiconductor packaging technologies are being used to meet specific needs.

IDTechEx has released a new market research study titled "Advanced Semiconductor Packaging 2023-2033". This study examines the market prospects, key player analysis, and most recent developments in advanced semiconductor packaging technologies. This report also conducts a comprehensive examination of the semiconductor market as a whole. Additionally, IDTechEx leverages its expertise and years of research in data centers, autonomous vehicles, 5G, and consumer electronics to provide the reader with a thorough understanding of how advanced semiconductor packaging is influencing various industries and what the future may hold.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: