+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Nanusens can now create ASICs with embedded sensors

News

Now both sensor and its control circuit can be shrunk simultaneously as IP blocks to required CMOS process node to create ASICs with integrated sensors.

Nanusens has successfully created a fully digital circuit design to measure the capacitance of its nanosensors. This means that both the sensor structure and its detection circuitry can be made at the same time within a chip using standard CMOS processes on whatever process node is required. As a result, ASICs can now be made with several different sensors embedded within them. This breakthrough in integration of sensor solutions as IP blocks offers dramatic reductions in costs and size as it completely replaces the current solution of discrete sensor packages.

“This is a major milestone for the company,” said Dr. Josep Montanyà, CEO of Nanusens. “The first was successfully making our unique, nanoscale, sensor structures within the CMOS layers. This solves the problem that conventional MEMS have to be made on custom production lines that have limited production capabilities whereas we can make almost unlimited numbers of our sensors in CMOS fabs. These are available in standard packages such as LGA, QFN, WLCSP and others, but, like all other MEMS sensors, they require analog circuitry to detect tiny capacitance changes coming from nano-displacements of their devices in operation. Our breakthrough is the creation of a fully digital detection circuit as this can be scaled down to the process node being used for the sensor structure and pairs to form a complete sensor and detection solution.

“Being able to shrink the pair simultaneously enables us to take advantage of all the benefits of using smaller CMOS geometries such as reduced costs and, importantly, reduced power consumption of more than 10x compared to analog detection circuits. This is impossible for other MEMS sensor solutions as their structures cannot be shrunk neither can their analog circuits as their transistors need a large area to maintain the required low levels of noise.”

The all-digital detection circuit provides a very fast on/off switching of the circuit of 3 microseconds compared to 300 microseconds or even several milliseconds in conventional analog transconductance/charge amplifier circuits or similar. This is very advantageous for applications requiring a very low sampling frequency, such as motion detector applications where the motion detector is typically used to wake up the rest of the device. If the device is in sleep mode most of the time, then the battery life is very dependent on the current consumption of the motion detector. The ultrafast on/off of the new digital detection circuit results in sub micro-ampere current consumption on the 180nm test chip, which is much lower than the state-of-the-art in the market and more than doubles the battery life in these applications.

“This is a revolution for the sensor industry,” added Dr Montanyà. “Instead of being discrete packages on a PCB or a multi-die solution, all the required sensors can be integrated into an ASIC just like another IP block. This will provide a major reduction in the BOM, size and power requirements of many, multi-sensor devices, especially portable ones such as smart phones, ear buds, and smart watches. We are already in discussion with companies who want to license this IP”

Reality AI Explorer Tier offers free AI/ML development access
AEM introduces new generation of Automated Burn-In Systems
NPUs are emerging as the main rival to Nvidia’s AI dominance, says DAI Magister
Camtek receives a $20M order from a Tier-1 OSAT
Free samples of every STMicroelectronics NPI IC available from Anglia
NY CREATES and SEMI sign MoU
Major government investment to 'propel' Canada
QuickLogic announces $5.26 million contract award
ASNA and Athinia collaborate
Global sales forecast to reach record $109 billion in 2024
AMD to acquire Silo AI
Nanotronics unveils 'groundbreaking' Gen V AI Model
Aitomatic unveils SemiKong
Biden-Harris Administration reveals first CHIPS for America R&D facilities and selection processes
Collaboration to produce cutting-edge AI accelerator chips
Oxford Ionics breaks global quantum performance records
Adeia wins ECTC Award for paper on “Fine Pitch Die-to-Wafer Hybrid Bonding”
AEM introduces new generation of Automated Burn-In Systems
Sydney council forges vital semiconductor agreement
EV Group's EVG880 LayerRelease wins 2024 Best of West
Biden-Harris Administration to invest up to $1.6 billion
Cyient sets up subsidiary for semiconductor business
EMD Electronics network leaders honoured
Accenture acquires Cientra
Introducing Park FX200
Deep learning chipset market to surge to $72.8 billion by 2033
PI Innovation Award 2024: Nanobodies for Diagnostic and Therapeutic Applications
Graphcore joins Softbank Group
Kaman Measuring highlights high precision displacement sensors
Si2 reveals recipients of Annual Power of Partnerships Award
Advantest achieves ASPICE Level 2 Certification for V93000 SmarTest 8 Software
Semiconductors to become a trillion-dollar industry by 2030
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: