Loading...
News Article

Nanusens can now create ASICs with embedded sensors

News

Now both sensor and its control circuit can be shrunk simultaneously as IP blocks to required CMOS process node to create ASICs with integrated sensors.

Nanusens has successfully created a fully digital circuit design to measure the capacitance of its nanosensors. This means that both the sensor structure and its detection circuitry can be made at the same time within a chip using standard CMOS processes on whatever process node is required. As a result, ASICs can now be made with several different sensors embedded within them. This breakthrough in integration of sensor solutions as IP blocks offers dramatic reductions in costs and size as it completely replaces the current solution of discrete sensor packages.

“This is a major milestone for the company,” said Dr. Josep Montanyà, CEO of Nanusens. “The first was successfully making our unique, nanoscale, sensor structures within the CMOS layers. This solves the problem that conventional MEMS have to be made on custom production lines that have limited production capabilities whereas we can make almost unlimited numbers of our sensors in CMOS fabs. These are available in standard packages such as LGA, QFN, WLCSP and others, but, like all other MEMS sensors, they require analog circuitry to detect tiny capacitance changes coming from nano-displacements of their devices in operation. Our breakthrough is the creation of a fully digital detection circuit as this can be scaled down to the process node being used for the sensor structure and pairs to form a complete sensor and detection solution.

“Being able to shrink the pair simultaneously enables us to take advantage of all the benefits of using smaller CMOS geometries such as reduced costs and, importantly, reduced power consumption of more than 10x compared to analog detection circuits. This is impossible for other MEMS sensor solutions as their structures cannot be shrunk neither can their analog circuits as their transistors need a large area to maintain the required low levels of noise.”

The all-digital detection circuit provides a very fast on/off switching of the circuit of 3 microseconds compared to 300 microseconds or even several milliseconds in conventional analog transconductance/charge amplifier circuits or similar. This is very advantageous for applications requiring a very low sampling frequency, such as motion detector applications where the motion detector is typically used to wake up the rest of the device. If the device is in sleep mode most of the time, then the battery life is very dependent on the current consumption of the motion detector. The ultrafast on/off of the new digital detection circuit results in sub micro-ampere current consumption on the 180nm test chip, which is much lower than the state-of-the-art in the market and more than doubles the battery life in these applications.

“This is a revolution for the sensor industry,” added Dr Montanyà. “Instead of being discrete packages on a PCB or a multi-die solution, all the required sensors can be integrated into an ASIC just like another IP block. This will provide a major reduction in the BOM, size and power requirements of many, multi-sensor devices, especially portable ones such as smart phones, ear buds, and smart watches. We are already in discussion with companies who want to license this IP”

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: