Loading...
News Article

CEA-Leti reports Neural Network breakthrough

News

A team comprising CEA-Leti, CEA-List and two CNRS laboratories has published a new paper in Nature Communications presenting the first complete memristor-based Bayesian neural network implementation for a real-world task—classifying types of arrhythmia recordings with precise aleatoric and epistemic uncertainty.

Considering medical-diagnosis and other safety-critical, sensory-processing applications that require accurate decisions based on a small amount of noisy input data, the study notes that while Bayesian neural networks excel at such tasks because they provide predictive uncertainty assessment, their probabilistic nature requires increased use of energy and computation. The increase is caused by the fact that implementing the networks in hardware requires a random number generator to store the probability distributions, i.e. synaptic weights.

“Our paper presents, for the first time, a complete hardware implementation of a Bayesian neural network utilizing the intrinsic variability of memristors to store these probability distributions,” said Elisa Vianello, CEA-Leti chief scientist and co-author of the paper, “Bringing Uncertainty Quantification to the Extreme-Edge with Memristor-Based Bayesian Neural Networks”. “We exploited the intrinsic variability of memristors to store these probability distributions, instead of using random number generators.”

A second major challenge was that performing inference in the team’s approach requires massive parallel multiply-and-accumulate (MAC) operations.

“These operations are power-hungry when carried out on CMOS-based ASICs and field-programmable gate arrays, due to the shuttling of data between processor and memory,” Vianello said. “In our solution, we use crossbars of memristors that naturally implement the multiplication between the input voltage and the probabilistic synaptic weight through Ohm’s law, and the accumulation through Kirchhoff’s current law, to significantly lower power consumption.”

Reconciling Memristors and Bayesian Neural Networks

Co-author Damien Querlioz, a scientist associated with the University of Paris-Saclay, the French National Center for Scientific Research (CNRS) and the Center of Nanosciences and Nanotechnologies, said the team also had to reconcile the nature of memristors, whose statistical effects adhere to the laws of device physics, with Bayesian neural networks, in which these effects can take arbitrary shapes.

“This work overcomes that challenge with a new training algorithm – variational inference augmented by a ‘technological loss’ – that accommodates device non-idealities during the learning phase,” he said. “Our approach enables the Bayesian neural network to be compatible with the imperfections of our memristors.”

Uncertainty quantification involves the network's ability to identify unknown situations out-of-distributions.

If a traditional neural network trained to recognize cats and dogs is presented with an image of a giraffe, it “confidently misclassifies” it as a cat or a dog, Vianello said. “In contrast, a Bayesian neural network would respond, ‘I am not entirely sure what this is because I have never seen it.’ While this example is lighthearted, in critical environments like medical diagnosis, where incorrect predictions can have severe consequences, this uncertainty-capturing ability becomes crucial.”

This capability arises from the fact that synaptic values in Bayesian neural networks are not precise values, as in traditional neural networks, but rather probability distributions. Consequently, the output is also a probability distribution, providing information about its “certainty”.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: