Loading...
News Article

Imec pioneers low-power UWB receiver chip

News

10x more resilient against Wi-Fi and (beyond) 5G interference.

At this week’s IEEE International Solid-State Circuits Conference (IEEE ISSCC2024), imec presents a low-power ultra-wideband (UWB) receiver chip that is ten times more resilient against interference from Wi-Fi and (beyond) 5G signals than existing, state-of-the-art UWB devices. Imec’s breakthrough chip is a major step forward in developing and deploying next-generation UWB applications, which are becoming increasingly safety-critical. Think of child presence detection systems in the automotive sector, where reliability and assured availability are paramount, or manufacturing environments, where UWB’s precise localization capabilities could ensure the safety of human workers operating near robotic arms, AGVs, and other automated machinery.


In the coming months and years, the spectrum allocated for ultra-wideband communications (typically spanning the 6 to 10GHz frequency range) will face increasing competition from other wireless technologies that eye the same frequencies to extend their reach. The recent approval of Wi-Fi 6e, for instance, positions it to operate in the 5.925 to 7.125GHz band. And (beyond) 5G technologies are also expanding into the upper 6GHz band – given that their existing frequency ranges risk running out of steam.


For the UWB industry, this requires proactive measures, especially as UWB technology moves beyond (traditional) secure keyless entry applications to safety-critical automotive and industrial automation functions. In other words, there is a growing need for solutions that allow UWB and other wireless technologies to coexist seamlessly in the same frequency bands.


Imec’s new IR-UWB receiver: -13dBm blocker resilience, and 7.6mW power consumption


Imec's new impulse radio (IR) UWB receiver chip – implemented in a 22nm FDSOI process, and with a compact active area of 0.32mm² – stands out as a pioneering solution to avoid interference between UWB and other wireless signals.


To enhance the receiver’s blocking performance, a transformer-coupled bandpass filter (BPF) is integrated into the complementary common gate (CCG) stage of the UWB low-noise amplifier (LNA) front-end. As such, imec’s receiver exhibits an exceptional -13dBm blocker resilience, making it ten times more resilient against Wi-Fi and (beyond) 5G interference compared to existing solutions.


Moreover, several circuit design optimizations enable the receiver to achieve its outstanding interference resilience at the lowest power consumption (7.6mW). This efficiency allows the receiver analog front-end (AFE) to operate ten times longer on the same (battery) power compared to current IEEE 802.15.4a/z compatible UWB devices, and twice as long as described in recent research papers.


The use of bandpass filters is a widely accepted method for dealing with unwanted signals, such as Wi-Fi, before they enter the receiver. However, imec’s patented implementation to reduce


intermodulation distortion significantly increases the receiver's robustness at low power and low supply design.


“To foster its industrial adoption, our UWB receiver not only complies with the existing IEEE 802.15.4z standard; it is also ready to support the upcoming IEEE.802.15.4ab standard. We believe this research, and the underlying collaboration in high-impact industrial ecosystems, are critical steps to enable future wireless technologies to coexist seamlessly across various use cases,” said Christian Bachmann, program director of wireless sensing at imec.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: