+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Tiny power converters run on vibrational energy

News

University of California San Diego and CEA-Leti scientists have developed a 'ground-breaking' piezoelectric-based DC-DC converter that unifies all power switches onto a single chip to increase power density.

This new power topology, which extends beyond existing topologies, blends the advantages of piezoelectric converters with capacitive-based DC-DC converters.

The power converters the team developed are much smaller than the huge, bulky inductors currently used for this role. The devices could eventually be used for any type of DC-DC conversation, in everything from smart phones, to computers, to server farms and AR/VR headsets.

The results were presented in the paper, “An Integrated Dual-side Series/Parallel Piezoelectric Resonator-based 20-to-2.2V DC-DC Converter Achieving a 310% Loss Reduction”, Feb. 20 at ISSCC 2024 in San Francisco.

“The Dual-side Series/Parallel Piezoelectric Resonator (DSPPR) is the first IC used for PR-based power conversion, and achieves up to 310% loss reduction over prior-art published and co-designed discrete designs for VCRs<0.125,” the paper reports.

“This innovative approach enhances performance, especially at low voltage conversion ratios—an area where prior works struggled to sustain both high efficiency and optimal utilization of piezoelectric materials,” said Patrick Mercier, a professor in the Department of Electrical and Computer Engineering at UC San Diego and a senior author of the paper.

The paper explains that a hybrid DSPPR converter exploits integrated circuits’ ability to offer sophisticated power stages in a small area compared to discrete designs, and enables efficient device operation at voltage conversion ratios (VCR) of less than 0.1.

“The IC provides a distinct opportunity to consolidate all power switches onto a single chip, significantly diminishing the PCB footprint and enhancing phase-control precision,” said Gael Pillonnet, scientific director of CEA-Leti’s Silicon Component Division.

In addition, incorporating additional capacitive-based converter stages, both pre- and post- the piezoelectric DC-DC converter, contributes to performance improvement.

“This strategic integration reduces the demand on piezoelectric material, resulting in a more compact converter with a notably smaller total volume. The marginal increase in additional capacitors, which is less than 10 percent, pales in comparison to the substantial gains facilitated by the proposed topology,” Pillonnet said.

“The DC-DC converter, particularly in the low VCR range, which was a focus of our work, has widespread applications in various sectors, such as high-power computing servers, automotive systems, USB chargers, and battery-powered devices,” said Wen-Chin Brian Liu, a Ph.D. student in Mercier’s research group and the lead author of the paper.

Tiny power converters run on vibrational energy
Cadence and Intel Foundry collaborate
Infineon sells manufacturing sites
Renesas develops AI accelerator
Mouser Electronics promotes Wearables Resource Centre
DuPont to showcase materials innovation for EUV lithography
CEA-Leti develops novel architecture for Keyword-Spotting
Imec pioneers low-power UWB receiver chip
New eBook from Mouser and Analog Devices
Keysight joins U.S. Commerce Department’s AI Safety Institute Consortium
Greene Tweed names industry veteran Justine Franchina as COO
Arizona Commerce Authority allocates funding to NAU
SwissChips Initiative to boost Swiss chip industry
Five facilities in five years for India?
Brewer Science to present innovative materials and processes at SPIE Conference
VTT explores how to make communications smoother with quantum computing
SIA applauds over $5 billion in CHIPS R&D investments
ASMC 2024 to spotlight advanced innovations
Siemens acquires high-performance visual inspection company "Inspekto"
Optimising predictive maintenance
Industry poised for 2024 recovery
zeroRISC, Nuvoton and Winbond join forces
Infineon drives decarbonisation and digitalisation
ROHM introduces new SBDs
Imec launches Design Pathfinding Process Design Kit for N2 Node
High-speed line inspection at the IPC APEX EXPO 2024
Renesas to acquire PCB design software leader Altium
SK hynix unveils recycled materials roadmap
Supporting quantum workforce development
Ichor receives Supplier Excellence Award from Applied Materials
Empower Semiconductor showcases IVRs
Bruker acquires Nanophoton Corporation
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: