Loading...
News Article

SemiQon ships silicon-based quantum chip and transistors

News

Research groups around the world are now using these first-generation silicon-based chips helping the industry step faster to the million qubit level of quantum computing.

SemiQon, a Finland-based startup specializing in silicon-based quantum processors, has successfully manufactured and pre-tested a 4-qubit quantum dot array from the first production run at its manufacturing facility in Espoo, Finland. The new chips are now shipping to strategic partners around the world as a toolkit for further research and development. The aim is to help make building stable logical qubits easier and faster to accelerate the use of quantum computing for complex problems.

First-generation quantum computers have already achieved impressive computational feats. However, solving highly specific problems related to pharmaceuticals, logistics, space, and material design will require increased computational power. As researchers, ecosystems, and companies around the globe lay out their ambitious visions for quantum computing, the computing power must still be scaled efficiently to address these challenges. Current methods do not make this possible.

“We are gradually moving towards the million qubit era and the contribution of hardware is becoming more and more essential,” says Dr. Himadri Majumdar, CEO and Co-founder of SemiQon. “Our solution builds on the technological development and know-how of semiconductors and benefits from existing infrastructure and industry. Utilizing such infrastructure effectively and efficiently has allowed us to accomplish one of our first goals within a short period of time. The challenge is getting to quantum supremacy in a sustainable, scalable, and affordable manner. These new chips are our first step in a long journey to making quantum dreams a reality.”

SemiQon's strategic path of combining classical and quantum elements at cryogenic temperatures also took a big leap forward through the demonstration of very low noise and better control over the channel using record low sub-threshold swing in the manufactured fully-depleted silicon-on-insulator metal-on-semiconductor (FDSOI-MOS) transistors. These transistors will be the backbone of realizing a cryogenic integrated circuit (IC), ultimately leading to quantum IC for scalable, efficient, and affordable quantum computers.

The results will be communicated through a peer-reviewed international scientific article, which is currently under review.

Since the launch of its production chip manufacturing line last year in the Micronova Center for Applied Micro and Nanotechnology in Espoo, SemiQon has established several university and commercial partnerships with organizations looking to move quantum computing closer to its goal of usable physical and logical qubits. The first-generation SemiQon chips are already shipped to strategic partners globally for further testing and experimentation, mainly for the advancement of research and development in the domain.

“SemiQon’s prototype devices and their proposed fast iteration of the new generation of devices are beneficial and necessary for the research community to experiment on and push the boundary of public research,” says Professor Dominik Zumbühl of the University of Basel in Switzerland, one of SemiQon’s strategic collaborators.

SemiQon will be attending the Quantum.tech USA event in Washington DC, USA, in April 2024, where they will share SemiQon’s vision and mission for their cost-efficient advancements in quantum chip manufacturing.

SemiQon works closely with the quantum ecosystem from research groups to full-stack companies and is actively discussing with more partners to bring scalable quantum computing solutions to reality.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: