+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Imec introduces 'best-in-class' ADCs

News

Focus is on base stations and smartphones, propelling beyond-5G communications.

At this week’s IEEE Symposium on VLSI Technology & Circuits, imec introduces two state-of-the-art ADCs for base stations and handsets. The base station ADC supports RF sampling, operates across multiple frequency bands (up to 5GHz), and combines high resolution and high linearity with low power consumption. Complementing this is a single-channel handset ADC that achieves record-breaking power efficiency through multi-bit pipelined stages and background calibration. Both ADCs, available for licensing, represent a key step toward scalable, high-performance beyond-5G solutions – such as cloud-based AI and extended reality apps.


Beyond-5G technology will be a key enabler of increasingly bandwidth-intensive mobile services, such as cloud-based AI and extended reality apps. But it also comes with the use of higher frequencies (with mobile operators currently exploring frequencies up to 5GHz), and the deployment of ever more advanced infrastructure equipment – including large antenna arrays.


“This will require a transformation of operators’ mobile networks, particularly in the design of transceivers – and the underlying ADCs – at both the base station and handset ends. Key transceiver requirements will include a small footprint and low power consumption, along with support for features that enhance network capacity, such as multiband operation and Massive MIMO. We are addressing these needs with the introduction of two new ADCs at this year’s VLSI Symposium,” said Joris Van Driessche, program manager at imec.


A low-power RF-sampling ADC excelling in resolution and linearity at the widest bandwidth


Base station radios typically achieve multiband operation by assigning a transceiver to each frequency band, increasing the radios’ size and power consumption. In contrast, imec’s new RF-sampling ADC – which covers all bands below 5GHz and features GHz-level sampling speeds – operates seamlessly across multiple frequency bands. Additionally, while the large antenna arrays required for massive MIMO are usually equipped with numerous power-hungry, discrete transceivers, imec’s approach allows for a much more efficient system-on-chip implementation.


Joris Van Driessche: “To help base station radios cope with interference from other wireless signals, our ADC leverages built-in wideband-linear signal buffering to provide higher Effective Number of Bits (ENOB) than comparable systems – without the need for digital nonlinear distortion correction engines. In addition, its design incorporates a novel hierarchical interleaver architecture that further enhances the ADC’s linearity and speed.”


Imec’s CMOS-based 10GS/s hierarchical time-interleaved ADC for RF-sampling applications delivers 9/8.2 ENOB at low/Nyquist frequencies with SFDR > 60dB up to a 5GHz bandwidth, all within a power budget of only 350mW. As such, this ADC combines the highest effective resolution with superior linearity at the widest bandwidth and exceptionally low power consumption.


A single-channel smartphone ADC exploiting multi-bit pipelined stages and background calibration for high linearity, bandwidth, and record power efficiency


To accommodate beyond-5G connectivity at the user end, imec introduces a single-channel mobile handset ADC that leverages multi-bit pipelined stages based on ring amplification.


Joris Van Driessche: “While the multi-bit approach is known to offer several advantages, such as high linearity, bandwidth, and power efficiency, it also presents challenges. Our implementation addresses these through the use of background calibration to calibrate DAC mismatch and inter-stage gain.”


Imec’s handset ADC achieves a 10.91 ENOB and 81dB SFDR at 1GS/s, while consuming only 17.8mW – resulting in a Walden FoM of 9.2 fJ/conv.-step. With these specifications, it sets a new standard for power efficiency.


Open to licensing agreements


“With these ADCs, both of which are available for licensing, we are introducing two key building blocks for enabling beyond-5G communications. Our next goal is to develop base station ADCs that support FR3 frequencies (6 to 20GHz) while maintaining high linearity and low power consumption, using advanced sub-5nm CMOS nodes,” concluded Joris Van Driessche.

Reality AI Explorer Tier offers free AI/ML development access
AEM introduces new generation of Automated Burn-In Systems
NPUs are emerging as the main rival to Nvidia’s AI dominance, says DAI Magister
Camtek receives a $20M order from a Tier-1 OSAT
Free samples of every STMicroelectronics NPI IC available from Anglia
NY CREATES and SEMI sign MoU
Major government investment to 'propel' Canada
QuickLogic announces $5.26 million contract award
ASNA and Athinia collaborate
Global sales forecast to reach record $109 billion in 2024
AMD to acquire Silo AI
Nanotronics unveils 'groundbreaking' Gen V AI Model
Aitomatic unveils SemiKong
Biden-Harris Administration reveals first CHIPS for America R&D facilities and selection processes
Collaboration to produce cutting-edge AI accelerator chips
Oxford Ionics breaks global quantum performance records
Adeia wins ECTC Award for paper on “Fine Pitch Die-to-Wafer Hybrid Bonding”
AEM introduces new generation of Automated Burn-In Systems
Sydney council forges vital semiconductor agreement
EV Group's EVG880 LayerRelease wins 2024 Best of West
Biden-Harris Administration to invest up to $1.6 billion
Cyient sets up subsidiary for semiconductor business
EMD Electronics network leaders honoured
Accenture acquires Cientra
Introducing Park FX200
Deep learning chipset market to surge to $72.8 billion by 2033
PI Innovation Award 2024: Nanobodies for Diagnostic and Therapeutic Applications
Graphcore joins Softbank Group
Kaman Measuring highlights high precision displacement sensors
Si2 reveals recipients of Annual Power of Partnerships Award
Advantest achieves ASPICE Level 2 Certification for V93000 SmarTest 8 Software
Semiconductors to become a trillion-dollar industry by 2030
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: