Loading...
News Article

Flash in space

News

Infineon delivers what it says is the industry’s first radiation-hardened-by-design 512 Mbit QML-qualified NOR Flash for space industry applications.

Infineon Technologies has introduced the industry’s first radiation-hardened-by-design 512 Mbit QSPI NOR Flash memory for space and extreme environment applications. The new device offers a fast quad serial peripheral interface (133 MHz) and the highest density, radiation, and single-event effects (SEE) performance available in a fully QML-qualified non-volatile memory for use with space-grade FPGAs and microprocessors.

The new device, which was funded in part by the U.S. Air Force Research Laboratory, Space Vehicles Directorate (AFRL) and jointly developed with Microelectronics Research Development Corporation (Micro-RDC), is based on Infineon’s field-proven SONOS (Silicon-Oxide Nitride-Oxide-Silicon) charge gate trap technology and operates at speeds up to 30 percent faster than lower density alternatives.

“Designers of next-generation space-grade systems continue to demand high-reliability, high-density memories. Working with such industry-leaders as Infineon and Micro-RDC led to a technology solution that combines high density and fast data rates with superior radiation performance compared to alternatives,” said Richard Marquez, AFRL Space Electronics Technology Program Manager.

“Infineon’s radiation-hardened-by-design NOR flash memory is an ideal complement to Micro-RDC’s family of solutions for extreme application environments,” said Joseph Cuchiaro, President, Micro-RDC. “With the availability of 512 Mbit density devices, designers will be able to implement systems with the performance to meet stringent requirements across a wider range of mission profiles than previously possible.”

“The extension of Infineon’s 512 Mbit NOR Flash memory to its rad-hard memory portfolio is further testament to our commitment to deliver highly reliable and high-performance memories for next-generation space requirements,” said Helmut Puchner, Vice President, Fellow, Aerospace and Defense, Infineon Technologies. “This collaborative effort with AFRL and Micro-RDC advances the industry state-of-the-art to address the extreme environments encountered in space applications with technology that will improve performance in critical satellite functions.”

Infineon’s SONOS technology underlies a unique combination of density and speed, as well as unsurpassed radiation performance, with excellent endurance of up to 10,000 P/E and up to 10 years of data retention. The 133 MHz QSPI interface provides fast data transfer rates for space-grade FPGA and processors. A ceramic QFP (QML-V) package occupies 1” x 1” board area, and an even smaller footprint plastic TQFP (QML-P) 0.5” x 0.8” is available. Additionally, the device offers the highest density TID/SEE performance combination for space FPGA boot code solutions and the QML-V/P with DLAM certification meets the most stringent industry qualifications.

A typical use case for this device includes configuration image storage for space-grade FPGAs and standalone boot code storage for space grade multi-core processors.

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: