Loading...
News Article

Smart and compact sensors with Edge-AI

News

A newly launched interdisciplinary research project involving universities of Brandenburg and research institutions is developing new technological approaches for better and more effective integration of artificial intelligence at the edges of IT networks, so-called “edges”.

These developments could be of great importance in the future, particularly for applications in industrial electronics, medical technology and environmental monitoring. Fraunhofer IPMS is contributing its expertise in miniaturized sensor structures and the integration of electronic components.

In the project with the name “InSeKT” (German: Development of Intelligent Sensor Edge Technologies), the Technical University of Applied Sciences Wildau, the Leibniz Institute for High Performance Microelectronics (IHP) and the Fraunhofer-Institute for Photonic Microsystems IPMS are working on new hardware, software and sensor solutions to make better use of artificial intelligence (AI) right at the edges of IT networks. Artificial intelligence must process large amounts of data as quickly as possible. The aim of the project is to enable complex calculations directly where the data is generated, for example at the sensor itself.

Currently, data processing using AI is often carried out via central cloud computing solutions. The data is calculated on central servers, which means that large amounts of data are transmitted over long distances. As a result, data leaks can occur which creates opportunities for unauthorized third parties to attack. Decentralized data processing not only improves data protection, but also enables real-time capability of the systems, as data transmissions over long distances are avoided.

The project addresses the key factors for market acceptance: developing technologies for system integration, reducing costs, increasing reliability and increasing the degree of miniaturization. It is led by an interdisciplinary team from various institutions and specialist disciplines.

Advanced sensor technology to solve material and integration problems

The Cottbus-based ‘Integrated Silicon Systems’ branch of the Fraunhofer Institute for Photonic Microsystems IPMS is working on the functional expansion and integration of existing MEMS sensors for edge AI applications. Signal processing is integrated directly into the sensor and data can be collected directly where it is generated. The aim is to increase the adaptability of sensors to different application scenarios without having to replace the underlying hardware.

An initial central area of development at Fraunhofer IPMS is gas analysis using ion mobility spectrometers (IMS). An IMS makes it possible to detect ionizable analyte substances directly in the air, even at very low concentrations. Existing approaches lack sufficient miniaturization. A first IMS demonstrator, which is based on a FAIMS (field asymmetric-waveform ion mobility spectrometry) approach, has flexible electrode spacing, making it possible to overcome this hurdle.

Furthermore, the goal of a data-supported evaluation of photodetectors for the near-infrared wavelength range is being pursued. These are used, for example, in material analysis and recycling and even enable analysis through packaging. The focus lies on improving an Al-TiN-Si-Schottky detector component with cylindric pyramidal structures for a higher sensitivity and improved scalability by using cheaper materials.

A third area deals with the adapted use of capacitive micromechanical ultrasonic transducers (CMUTs) for improved imaging. CMUTs are highly sensitive ultrasound receivers due to their size and capacitive operating principle. Signal evaluation close to the sensor would enable faster imaging. “Later on, it will be possible to carry out very precise analyses of hand movements using an ultrasound signal based on that of bats, as well as measuring blood sugar using ultrasound,” explains Dr. Sebastian Meyer, Head of the ‘Integrated Silicon Systems’ department at Fraunhofer IPMS.

The TH Wildau and the Leibniz IHP will then use the generated sensor data to train edge AI systems for fast and precise data processing. The results of the project will enable further steps towards more intelligent and compact sensor systems.

The Northeast Microelectronics Coalition awards $1.43 million to 19 semiconductor companies
Smart and compact sensors with Edge-AI
TechInsights appoints Dan Kim as Chief Strategy Officer
Infineon introduces 'powerful and energy-efficient' IGBT and RC-IGBT devices for electric vehicles
Applied Materials makes strategic investment in BE Semiconductor Industries
AMD achieves first TSMC N2 product silicon milestone
Yokogawa Test & Measurement releases AQ2300 Series Optical Power Meter Modules
CE3S introduces Millice StripAid X Series
IDTechEx explores emerging applications for PICs
Miniature hexapod designed for demanding applications
ACM Research receives 2025 3D InCites Technology Enablement Award
ROHM develops low ON-resistance, high-power MOSFETs
Exploring packaging technologies
AI tops tech growth charts
Hailo selects Avnet ASIC as Channel partner for TSMC silicon production
Innatera appoints Intralink to bring brain-inspired AI to Asia
ABLIC strengthens semiconductor portfolio
Infineon bolsters global lead in automotive semiconductors
Infineon to acquire Marvell’s Automotive Ethernet business
Ansys semiconductor solutions certified by TSMC
InfiniLink secures $10M funding from MediaTek, Sukna Ventures, and Egypt Ventures
UMC unveils new fab facility in Singapore
Tokyo Electron and IBM renew collaboration
Production system for double-sided wafer probe test for silicon photonics
Imec pioneers photonic code-division multiplexing FMCW 144GHz distributed radar
Lightmatter unveils Passage M1000 Photonic Superchip
Onto Innovation and LPKF set to accelerate mass production of glass core substrates
Quantum sensors: from lab to chip through semiconductor fabs
SONOTEC attends European CMP and WET Users Group Meeting in Leuven, Belgium
iPronics unveils World’s silicon photonics optical circuit switch
Marvell demonstrates silicon photonics light engine
Baden-Württemberg attracts imec to lead development of chiplet-based technology
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: