Loading...
News Article

Purdue receives grant funding in all three areas of NSF semiconductor research program

News

The National Science Foundation (NSF) and several corporate partners are relying on Purdue University researchers to improve semiconductor performance and energy efficiency with new research grants announced by NSF Sept. 16.

Purdue is the only university chosen by the review panels and NSF to lead research in each of three topic areas and will receive more than $5 million.

The NSF announced the grants in partnership with Ericsson, Intel Corp., Micron Technology Inc. and Samsung Electronics Co. Ltd. Each was issued as part of the Future of Semiconductors (NSF FuSe2) competition to advance U.S. leadership in semiconductor research and innovation and to address key challenges in the field. The grants support the goals of the 2022 CHIPS and Science Act to ensure long-term leadership in the microelectronics sector and nationwide economic growth.

The funding for Purdue will support research to develop innovative materials and designs that will lead to faster, more efficient chips for use in everything from smartphones to AI systems. Semiconductor research is a key pillar of Purdue Computes, a strategic university initiative to further scale Purdue’s research and educational excellence. In addition to leading workforce efforts in the country and landing large-scale industry partnerships, Purdue is proven again and again as the research leader in this foundation of the digital economy.

“These grants will build on and expand the critical semiconductor research that Purdue is known for throughout the world,” said Karen Plaut, executive vice president for research. “Receiving grants from the NSF and major semiconductor corporations in each of the available topic areas underscores Purdue’s reputation as a leader in chips research.”

The new grants support these Purdue projects:

• Bridging Atomic Layers and Foundation Models: An Indium-Oxide-Based Versatile Neural Computing Platform. This work focuses on creating new computing systems using indium oxide, a material that is only a few atomic layers thick. This platform mimics the way human brains process information, which could lead to smarter, faster and more energy-efficient AI systems. The project will be led by Haitong Li, assistant professor of electrical and computer engineering, with Peide Ye, the Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering, and Anand Raghunathan, the Silicon Valley Professor of Electrical and Computer Engineering.

• High-Resolution Imaging of Defects in Semiconductors: Detection, Reliability and Mitigation. This project will use advanced imaging techniques to find and study minute defects in semiconductor materials. Detecting defects at a very detailed level early in the manufacturing process helps improve semiconductor quality, performance and reliability. Leading this study is Nikhilesh Chawla, the Ransburg Professor in Materials Engineering, with Charles Bouman, the Showalter Professor of Electrical and Computer Engineering; Hany Abdel-Khalik, professor of nuclear engineering; and Eshan Ganju, postdoctoral researcher in materials engineering.

• Strain and Temperature Ex-Situ Processing of Ferroelectric Oxides (STEP FOx) for BEOL Performance. This research is aimed at improving the processing methods of ferroelectric oxides. By carefully controlling the temperature and stress on the material during manufacturing, the researchers hope to enhance the material’s performance, which will help create more reliable and efficient electronic devices, especially in the “back-end-of-line” (BEOL) stages, which are key in the production of advanced computer chips. This work is being led by Thomas Beechem, associate professor of mechanical engineering.

Purdue investigators also are participating in a team led by Texas A&M:

• SPRINT: Scalable, High Performance and Reliable Interconnect Technologies Based on Interface Co-Design. This project aims to develop a new way to synthesize copper nanowires and design effective encapsulation layers based on two-dimensional materials. These break the paradigm-limiting current interconnect technology and enable next-generation high-performance and energy-efficient computer chips. Participating are Zhihong Chen, professor of electrical and computer engineering, and Sumeet Gupta, Elmore Associate Professor of Electrical and Computer Engineering.

“The nation’s semiconductor challenge is a Purdue priority,” said Mark Lundstrom, chief semiconductor officer and head of the university’s Semiconductor Task Force. “This funding from NSF and its corporate partners confirms that the work we are doing is critical to the advancement of the U.S. chip industry and all the current and future technological necessities that rely on it.”

Silicon photonics: accelerating growth in the race for high-speed optical interconnects
CCD-in-CMOS technology enables ultra-fast burst mode imaging
2025 6G A look forward
Critical Manufacturing climbs Deloitte’s Technology Fast 50
Semiconductors: The most important thing you probably know the least about
Imec and partners unveil SWIR sensor with lead-free quantum dot photodiodes
Lattice introduces small and mid-range FPGA offerings
SEMI and SMT inspection solutions at NEPCON Japan 2025
Nordic Semiconductor and Kigen demonstrate Remote SIM Provisioning for Massive IoT
Spirent collaborates with Siemens
Quobly forges strategic collaboration with STMicroelectronics
New standards in pressure measurement systems for the semiconductor industry
IBM delivers optics breakthrough
Semiconductor equipment sales to reach $139 Billion in 2026
Marvell introduces 1.6 Tbps LPO Chipset
ACM research strengthens Atomic Layer Deposition portfolio
CEA-Leti demonstrates embedded FeRAM platform compatible with 22nm FD-SOI node
Lattice introduces small and mid-range FPGA offerings
Solace unlocks full potential of event-driven integration
Advantest to showcase latest test solutions at SEMICON Japan 2024
CEA-Leti device integrates light sensing and modulation
Nordic launches Thingy:91 X prototyping platform for cellular IoT and Wi-Fi locationing
Imec achieves seamless InP Chiplet integration on 300mm RF Silicon Interposer
High-precision SMU
Powering India’s energy future
China’s Nvidia probe puts global investors ‘on notice’
POET Technologies appoints new director
Imec demonstrates core building blocks of a scalable, CMOS-fab compatible superconducting digital technology
Imec proposes double-row CFET for the A7 technology node
ULVAC launches new deposition system
Beebolt and SEMI Announce Strategic Partnership to Drive Supplier Resilience and Agility
esmo group introduces Automated Final Test Manipulator
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: