Loading...
News Article

Imec Demonstrates 18nm Pitch Line/Space Patterning

News

At the 2021 SPIE Advanced Lithography Conference, imec, a leading research and innovation hub in nanoelectronics and digital technologies, demonstrates for the first time the capability of directed self-assembly (DSA) to pattern line/spaces with a pitch as small as 18nm, using a high-chi block copolymer (high-χ BCP) based process under high volume manufacturing (HVM) conditions. An optimized dry-etch chemistry was used to successfully transfer the pattern into an underlying thick SiN layer – which will enable further defectivity inspection. These results confirm the potential of DSA to complement traditional top-down patterning for the industrial fabrication of sub-2nm technology nodes.

The further miniaturization of devices will require the patterning of features that have critical pitches below 20nm. For these small feature sizes, the traditional top-down lithography patterning is increasingly challenged with issues that are inherent to the reaction of the photosensitive materials with light – such as stochastic printing failures and line-edge/line-width roughness (LER/LWR). Since 2010, industry began to take an interest in alternative bottom-up patterning approaches, such as directed self-assembly (DSA), as a potential route to complement and further extend the photolithography-based patterning.

DSA uses the microphase separation of a block copolymer (BCP) to define a pattern. The pattern can be engineered by tuning the composition and size of the polymer. The assembly can be further guided – directed – by using a prepattern of either line/spaces or holes. This results in a final regular nanosized pattern with much tighter pitch (30-5nm) than the guide template. In 2019, imec could generate a pattern of 28nm pitch line/spaces with low and stable defectivity (i.e., bridges and dislocations), based on the DSA of the PS-b-PMMA block copolymer.

Based on these learnings, imec has now shifted the focus to develop the DSA process towards sub-20nm pitch patterning by using the second-generation block copolymers, i.e., high-χ BCPs from imec’s DSA materials partners (Merck KGaA, Darmstadt, Germany, Brewer Science Inc., Nissan Chemical Corp., Tokyo Ohka Kogyo Co. Ltd.). The pattern was prepared from a 90nm full pitch guide pattern printed by 193 immersion lithography. After 60 second self-assembly of high-χ BCP at HVM-friendly track (SCREEN Semiconductor Solutions Co., Ltd.), no dislocations could be detected from 18nm pitch L/S pattern for the best case. “The subsequent transfer of the high-aspect ratio lines into the underlying material stack was very challenging,” says Hyo Seon Suh, Exploratory Patterning Materials team leader at imec. “As a first step, we etched one block of the BCP by using a dry etch process with optimized etch selectivity. After opening the block, the other block was transferred into the underlying stacks, which served as a hard mask for further patterning a SiN layer. A customized dry etch chemistry, developed in close collaboration with Tokyo Electron Ltd., allowed the 18nm line/space pattern to be successfully transferred into a SiN layer deep enough for following defect inspection, without remarkable line wiggling or line collapse.” In a next phase, this patterned layer will be used to set up the metrology for defectivity inspection and LER/LWR measurements

“In recent years, DSA has attracted large industrial interest which has evolved into a valuable ecosystem of universities, metrologists, material and equipment suppliers. Our DSA ecosystem has been key to the results that we have achieved so far,” says Steven Scheer, VP Advanced Patterning Process and Materials at imec. “For the first time, we showed the capability of DSA to move beyond 20nm pitch for line/spaces. The process is scalable towards smaller pitches by gradually enhancing the BCP’s χ-value. We believe that this bottom-up technique is capable of complementing traditional top-down patterning schemes or be used in combination with EUV lithography for patterning the most critical features of

Top-down (left) and cross-sectional (right) SEM images of an 18nm line/space pattern after high-χ DSA and subsequent etching into a target SiN layer.

ZEISS launches Crossbeam 550 Samplefab FIB-SEM
Critical Manufacturing brings highly advanced MES solution to SEMICON Europa
Infineon at electronica 2024: Solutions for decarbonisation and digitalisation
Infineon unveils 'world’s thinnest' silicon power wafer
Sunlit Chemical expands global reach with US facility opening in Phoenix
Semiconductor patent applications up 22% globally to 81,000 a year
Promoting collaboration and novel IC design technologies
EV Group announces board expansion In light of unabated growth
MIT team takes a major step toward fully 3D-printed active electronics
TSMC recognises Ansys
Quantum foundry nears completion
Global silicon wafer shipments to remain soft in 2024
DELO introduces UV-approach for fan-out wafer-level packaging
New 10-point guide to humidity control in cleanrooms
High memory bandwidth in the spotlight
Improved materials for microchip interconnections
SEMICON Europa 2024 to explore innovations in Advanced Packaging and Fab Management
SEMIExpo Vietnam 2024 heralds Vietnam’s position as 'dynamic new player'
Next Gen 3D X-Ray Inspection for Advanced Packaging: To see better. Faster. More.
New strategic collaboration between FRAMOS and NXP Semiconductors
Splitting hairs to ten to the power of four
TANAKA introduces “TK-SK” Palladium alloy for test equipment
Rebellions collaborates on next-gen AI computing chiplet technology
Semiconductor giants add $2.7 trillion to their stock values
Test early and test often
Semiconductors: Unstoppable growth in a billion-dollar market
Sustainable cleaning solutions for a greener microelectronics industry
Why the mask world is moving to curvilinear
Beyond AOI: An AI-driven revolution in visual inspection
Xscape Photonics raises $44 million Series A
CMOS sensors for niche vision applications
Emphasis on AI applications
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: