+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Enabling measurements of electric field within a working semiconductor device

News
Takayuki Iwasaki, Mutsuko Hatano and colleagues at the Tokyo Institute of Technology, the Japan Science and Technology Agency (JST) and Toshiharu Makino at the National Institute of Advanced Industrial Science and Technology (AIST) report a new method for sensing internal electric fields at the interior of operating semiconductor devices.

Semiconductors lie at the heart of many of the electronic devices that govern our daily lives. The proper functioning of semiconductor devices relies on their internally generated electric fields. Being able to measure these fields on the nanoscale is crucial for the development of next-generation electronics, but present techniques have been restricted to measurements of the electric field at a semiconductor's surface. Now, Takayuki Iwasaki, Mutsuko Hatano and colleagues at the Tokyo Institute of Technology, the Japan Science and Technology Agency (JST) and Toshiharu Makino at the National Institute of Advanced Industrial Science and Technology (AIST) report a new method for sensing internal electric fields at the interior of operating semiconductor devices. The technique exploits the response of an artificially introduced single electron spin to variations in its surrounding electric field, and enabled the researchers to study a semiconductor diode subject to bias voltages of up to 150 V.

Iwasaki and co-workers applied their method to diamond, a so-called wide-band-gap semiconductor in which the electric fields can become very strong "” a property important for low-loss electronic applications. Diamond has the advantage that it easily accommodates nitrogen"“vacancy (NV) centres, a type of point defect that arises when two neighbouring carbon atoms are removed from the diamond lattice and one of them is replaced by a nitrogen atom.  NV centres can be routinely created in diamond by means of ion implantation.  A nearby electric field affects an NV centre's energy state, which in turn can be probed by a method called optically detected magnetic resonance (ODMR).

Figure 1.

Nitrogen"“vacancy (NV) center formed in a diamond device for electric field sensing. Left: Schematic of the structure of the NV centre. Middle: Confocal fluorescence image of a single NV center in the device. Right: Schematic of the measurement configuration.

The researchers first fabricated a diamond p"“i"“n diode (an intrinsic diamond layer sandwiched between an electron- and a hole-doped layer) embedded with NV centres.  They then localized an NV centre in the bulk of the i-layer, several hundreds of nanometres away from the interface, and recorded its ODMR spectrum for increasing bias voltages.  From these spectra, values for the electric field could be obtained using theoretical formulas. The experimental values were then compared with numerical results obtained with a device simulator and found to be in good agreement "” confirming the potential of NV centres as local electric-field sensors.

Iwasaki and colleagues explain that the experimentally determined value for the electric field around a given NV centre is essentially the field's component perpendicular to the direction of the NV centre "” aligned along one of four possible directions in the diamond lattice.  They reason that a regular matrix of implanted NV centres should enable reconstructing the electric field with a spatial resolution of about 10 nm by combining with super-resolution techniques, which is promising for studying more complex devices in further studies.

The researchers also point out that electric-field sensing is not only relevant for electronic devices, but also for electrochemical applications: the efficiency of electrochemical reactions taking place between a semiconductor and a solution depends on the former's internal electric field.  In addition, Iwasaki and co-workers note that their approach need not be restricted to NV centres in diamond: similar single-electron-spin structures exist in other semiconductors like e.g. silicon carbide.

Figure 2.

a: Optically detected magnetic resonance (ODMR) spectra of the NV center for various bias voltages V.  b: The local electric field; experimentally and theoretically obtained values are in good agreement.

Background

Wide-band-gap semiconductors

Semiconducting materials feature a so-called band gap: an energy range wherein no accessible energy levels exist.  In order for a semiconductor to conduct, electrons must acquire sufficient energy to overcome the band gap; controlling electronic transitions across the band gap forms the basis of semiconducting device action.  Typical semiconductors like silicon or gallium arsenide have a band gap of the order of 1 electron volt (eV).  Wide-band-gap semiconductors, like diamond or silicon carbide, have a larger band gap "” values as high as 3-5 eV are not uncommon.

Due to their large band gap, wide-band-gap semiconductors can operate at temperatures over 300 °C.  In addition, they can sustain high voltages and currents.  Because of these properties, wide-band-gap semiconductors have many applications, including light-emitting diodes, transducers, alternative-energy devices and high-power components.  For further development of these and other future applications, it is essential to be able to characterize wide-band-gap devices in operation. The technique proposed by Iwasaki and colleagues for measuring the electric field generated in a wide-band-gap semiconductor subject to large bias voltages is therefore a crucial step forward.

Nitrogen"“vacancy centres

Diamond consists of carbon atoms arranged on a lattice where each atom has four neighbours forming a tetrahedron.  The diamond lattice is prone to defects; one such defect is the nitrogen"“vacancy (NV) centre, which can be thought of as resulting from replacing a carbon atom with a nitrogen atom and removing one neighbouring carbon atom. The energy level of an NV centre lies in the band gap of diamond but is sensitive to its local environment.  In particular, the so-called nuclear hyperfine structure of an NV centre depends on its surrounding electric field.  This dependence is well understood theoretically, and was exploited by Iwasaki and co-workers: detecting changes in an NV centre's hyperfine structure enabled them to obtain values for the local electric field.  A major advantage of this approach is that it allows monitoring the field within the material "” not just at the surface, for which methods had already been developed.

Optically-detected magnetic resonance

For probing the nuclear hyperfine structure of an NV centre in the bulk of the diamond-based device, Iwasaki and colleagues employed optically detected magnetic resonance (ODMR): by irradiating the sample with laser light, the NV centre was optically excited, after which the magnetic resonance spectrum could be recorded.  An electric field makes the ODMR resonance split; the experimentally detected split width provides a measure for the electric field.


Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: