+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Printed Organic Electronics Review Wins Best Paper Award.

News

Researchers at Sumitomo Chemical describe some of the key developments in printed organic devices over the years and their thoughts on winning the award.

While the world of electronic devices was radically different 30 years ago when Sumitomo Chemical (SC) began developing printed electronics technology, the company had already felt it was an area where they could make a significant contribution. Drawing on the company's decades of expertise in this field, Chizu Sekine, a researcher at SC, and colleagues prepared a review of the progress made in applying printed electronics to organic devices. The review has been referenced by several other papers since it was published in the journal Science and Technology of Advanced Materials in 2014, and this year it won the journal's best paper award.

"I think that the strong demand from the IoT or Trillion sensor network society is attracting us towards the development of printed electronics technology," says Chizu. "The key demands of these applications are (1) on-demand fabrication of various designs and (2) low manufacturing cost - printed electronics can give a solution to both these demands."

The review focuses on organic LEDs (OLEDs) and organic photovoltaic devices (OPV), which as Chizu explains provide useful examples of the state of the field. The review covers several milestones that have presented a gear change in the performance of these devices, such as the efficiencies achieved, and the ease of printing them. While Chizu suggests that materials development will be key to future progress, she adds that no single technology alone will lead to the commercialization of practical products. "I think that hybrid technology will be the most significant in future development."

On hearing of the award Chizu was surprised and pleased as the review had attracted more interest than at first expected. She says, "This is a good opportunity to empower our research group to win the challenge of organic printed electronics development over our competitors."

Background organic electronics

Organic compounds are a class of chemicals that contain carbon, with the exclusion of carbides, carbonates, cyanides and pure oxides of carbon. These include small carbon-based molecules as well as polymers. While most conducting materials are inorganic, the discovery of a number of semiconducting and conducting polymers in the 1950s and 1960s opened up the potential to develop organic electronic devices.

Organic materials tend to be cheaper than their inorganic counterparts, and have lower processing temperatures, which makes organic electronic devices less expensive to produce. They can also be flexible which has benefits for both the applications they can be used in and further reducing fabrication costs.

OLEDs

Electroluminescence "“ the emission of light in response to an applied voltage "“ was first demonstrated in a polymer by a group in Cambridge in 1989, and a similar phenomenon was observed almost simultaneously by researchers at Sumitomo Chemical. While at the time the external quantum efficiency of the emitted light was very low "“ around 0.1 percent - it inspired decades worth of research to develop organic OLED devices that could exploit the phenomenon more efficiently.

Today OLEDs can be produced in red, green, blue and white, and external quantum efficiencies of 5-10 percent have been achieved with device lifetimes that range up to several tens of thousands of hours. The fine image-quality, and ultrathin, and light-weight features of OLEDs have already led to their uptake by Samsung in the Galaxy range, although so far these are produced by an evaporation process.

OPV

Organic photovoltaic devices have the reverse working mechanism to OLEDs, producing an electric potential difference from incident light. This can be used for energy harvesting or sensing. Like OLEDs the use of organic materials means that devices can be made thinner and more lightweight, with lower fabrication temperatures.

Printed electronics

Evaporation deposition currently dominates organic electronic device fabrication. While the low temperature processing requirements for these materials allows some cost savings, printing fabrication techniques could allow further cost savings, particularly in scaled up production. Roll-to-roll printing allows significant cost and production efficiencies, but is only suitable for flexible materials, a requirement that is readily met by organic materials.

The increasing ubiquity of electronics has raised interest in techniques that allow on-demand fabrication of various designs and low manufacturing costs. Printed organic electronics meets these demands. Polymer OLED materials are already soluble and progress is being made towards making small organic molecules soluble with the introduction or replacement of substituent groups.


Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: