Info
Info
News Article

Swansea University Develops Self-Cleaning Membranes For Sustainable Desalination

News

A vital advanced water treatment membrane made of electrically conductive nanofibers which is self-cleaning is the brainchild of eminent Chemical Engineering Professor Nidal Hilal, Director of the Centre for Advanced Technologies and Environmental Research (CWATER) at Swansea University's College of Engineering.

Self-cleaning membranes offer a critically needed solution to the problem of the unwanted build-up of organic and inorganic deposits on a membrane's surface that reduces the membrane's ability to filter impurities. Water treatment and purification membranes that can easily clean themselves when fouled could make pressure-driven membrane filtration systems used to treat and desalinate water more energy-efficient.

Keeping membranes clean, permeable and functional is a great challenge to membrane desalination technologies. When a membrane becomes fouled much less water can pass through the membrane at a constant pressure. 

Conventional methods for cleaning fouled membranes involve expensive and harsh chemical treatments, and often lead to water treatment plant shut-downs, which can cost millions of dollars in lost operational hours. In the UAE, annual spending on desalination is already estimated to cost 3.5 US$ billion, indicating a pressing need for solutions that avoid costly shut-downs and treatments.

In addition to posing a heavy financial burden, fouled membranes are also a sustainability issue, as once a membrane becomes fouled, the higher pressure needed to push water through clogged pores significantly increases the plant's energy consumption. The harsh chemicals used to clean a fouled membrane are also bad for the environment and require neutralizing. Thus, finding a way to easily and quickly clean fouled membranes not only makes financial sense, but environmental sense.

In a country like the UAE, where natural gas-powered thermal desalination produces over 80% of the country's domestic water, innovative technologies like self-cleaning membranes to support a shift toward lower-energy and lower-cost membrane-based desalination are essential for achieving economic and environmental balance while meeting the UAE's water demands.

And a research group from Masdar Institute with Professor Hilal may have brought the UAE closer towards realizing a more sustainable and economic approach to membrane desalination through their research on the application of advanced nanofibers for enhanced, self-cleaning membranes.

Professor Hilal was been heavily involved in this research from day one, on the patent and on resulting research papers during his secondment to the Masdar Institute.

Professor Nidal Hilal and Professor Raed Hashaikeh from Masdar Institute successfully developed a self-cleaning microfiltration membrane in 2014 and a paper describing the research was published in the Journal of Membrane Science.

But they did not stop there; they wanted to take their research a step further and find a way to develop a self-cleaning nanofiltration membrane. While microfiltration membranes are useful for removing larger particles, including sand, silt, clays, algae and some forms of bacteria, nanofiltration membranes can go a step further, removing most organic molecules, nearly all viruses, most of the natural organic matter and a range of salts. Nanofiltration membranes also remove divalent ions, which make water hard, making nanofiltration a popular and eco-friendly option to soften hard water.

Professors Hilal and Hashaikeh then mixed carbon nanostructures with networked cellulose gel and as the mixture dried, the networked cellulose shrank. The shrinking of the network cellulose in turn pressurized the nanostructures in the membrane. The resulting membrane is strong with much smaller pore sizes. This study appeared as a paper in the journal Desalination last month.

Another innovative research by Professor Hilal and his team at Swansea along with the Research team at Masdar Institute has just been published in the international journal Desalination. The research applies, for the first time, the electrolysis concept at the spacer component of the membrane module where the conductive spacers works as an electrode (cathode) in electrochemical set-up. The membrane system was subjected to fouling and then exposed to periodic electrolysis, wherein in-situ cleaning of membrane surface by hydrogen bubbles generation at the spacer is applied.

The innovative research conducted by Professor Nidal Hilal and the team will help position Abu Dhabi as a leader in membrane desalination research and technology development. This project has already yielded a patent filing, and is hoped to provide the emirate with novel intellectual property in the critical industry of desalination.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS
Will Future Soldiers Be Made Of Semiconductor?
Tescan And 3D-Micromac Collaborate To Increase The Efficiency Of Failure Analysis Workflows
Changes In The Management Board Of 3D-Micromac AG
GOODFELLOW Confirms Membership In The BSI UK Graphene Group
AP&S Expands Management At Beginning Of 2021
U.S. Department Of Defense Partners With GLOBALFOUNDRIES To Manufacture Secure Chips At Fab 8
EV Group Establishes State-of-the-art Customer Training Facility
South Korean Point Engineering Chooses ClassOne’s Solstice S8 For Advanced Semiconductor Plating
Can New Advances In CMOS Replace SCMOS Sensors In Biomedical Applications?
ITRI And DuPont Inaugurate Semiconductor Materials Lab
Belgian Initiative For AI Lung Scan Analysis In Fight Against COVID-19 Goes European
Siemens And ASE Enable Next-generation High Density Advanced Package Designs
TEL Introduces Episode UL As The Next Generation Etch Platform
ASML Reports €14.0 Billion Net Sales
SUSS MicroTec Opens New Production Facility In Taiwan
Onto Innovation Announces New Inspection Platform
Tower Semiconductor Announced Program Creating An Integrated-Laser-on-Silicon Photonics Foundry Process
Obducat Receives Order For Fully Automated Resist Processing Tool From A Customer In Asia
Cadence Announces $5M Endowment To Advance Research
New Plant To Manufacture Graphene Electronics
Imec Demonstrates 20nm Pitch Line/Space Resist Imaging With High-NA EUV Interference Lithography
Panasonic Microelectronics Web Seminar
K-Space Offers A New Accessory For Their In Situ Metrology Tools
DISCO's Completion Of New Building At Nagano Works Chino Plant

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event