EVG And Swisslitho To Develop Nanoimprint Lithography Solution

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, and SwissLitho AG, a manufacturer of novel nanolithography tools, today announced a joint solution to enable the production of 3D structures down to the single-nanometer scale.
Initially demonstrated within the "Single Nanometer Manufacturing for Beyond CMOS Devices (SNM)" project funded by the Seventh Framework Program of the European Union, the joint solution involves SwissLitho's novel NanoFrazor thermal scanning probe lithography system to produce master templates with 3D structures for nanoimprint lithography (NIL), and EVG's HERCULES NIL system with SmartNIL technology to replicate those structures at high throughput.
Target Applications
EVG and SwissLitho will initially target the joint solution for developing diffractive optical elements and other related optical components that support photonics, data communications, augmented/virtual reality (AR/VR) and other applications, with the potential to expand into biotechnology, nanofluidics and other nanotechnology applications. As part of the joint solution, SwissLitho's NanoFrazor system will be used to create imprint masters. Compared to conventional approaches, including electron beam (e-beam) and grayscale lithography, the novel technology has the unique ability to print 3D structures with unsurpassed accuracy. EVG's HERCULES NIL system will then be used to create working templates for production use, cost-effectively and at high throughput, using the company's proprietary large-area nanoimprint SmartNIL technology. Dr. Thomas Glinsner, corporate technology director at EV Group, noted,
"SwissLitho's NanoFrazor solution is highly complementary to EVG's SmartNIL technology. Together we can offer a complete NIL solution for photonics and other applications involving 3D structure patterning, providing significant opportunity for both companies to expand our customer base and market reach. Our NILPhotonics Competence Center will be the first point of contact for customers interested in this joint solution, where we will be able to offer feasibility studies, demonstrations and pilot-line production."
A Closer Look at the Technologies
Thermal scanning probe lithography, the technology behind the NanoFrazor, was invented at IBM Research in Zurich and acquired by SwissLitho AG. This maskless, direct-write lithography approach involves spin-coating a unique, thermally sensitive resist onto the sample surface before patterning. A heated ultra-sharp tip is then used to decompose and evaporate the resist locally while simultaneously inspecting the written nanostructures. The resulting arbitrary resist pattern can then be transferred into almost any other material using lift-off, etching, plating, molding or other methodologies.
"We developed our NanoFrazor line to provide a high-performance, affordable alternative and extension to costly e-beam lithography systems," said Dr. Felix Holzner, SwissLitho CEO. "The technology allows manufacturing of the master with many 'levels' in a single step. In particular, 3D structures with single nanometer accuracy can be produced more easily and with greater fidelity compared to traditional e-beam or grayscale lithography methods. We look forward to working with customers to combine our technology with EVG's successful SmartNIL process at their NILPhotonics Competence Center in Austria.
"The HERCULES NIL combines EVG's extensive expertise in NIL, resist processing and high-volume manufacturing solutions into a single integrated system that offers throughput of up to 40 wph for 200-mm wafers. The system's configurable, modular platform accommodates a variety of imprint materials and structure sizes--giving customers greater flexibility in addressing their manufacturing needs. In addition, its ability to fabricate multiple-use soft stamps helps extend the lifetime of master imprint templates.

AngelTech Live III: Join us on 12 April 2021!
AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!
Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.
2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.
We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.
We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.
Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.
Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.
So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.
REGISTER FOR FREE
VIEW SESSIONS