+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Semiconductor quantum transistor opens door for photon-based computing

News

The highly anticipated quantum science-based revolution in information technology requires the development of groundbreaking hardware comparable in function to the transistors used in today's computers.

Researchers at the University of Maryland's A. James Clark School of Engineering and Joint Quantum Institute (JQI) have cleared a hurdle in the development of such quantum-compatible hardware with their demonstration of the first single-photon transistor using a semiconductor chip.

Transistors are tiny switches that are the foundation of modern computing. Billions of them route electrical signals around inside the computers that power our smartphones, tablets and other devices. Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new information technology are stringent, and today's most advanced processors can't be repurposed as quantum devices. That's because quantum information carriers, dubbed qubits, have to follow the radically different rules laid out by quantum physics.

Scientists can use many kinds of quantum particles as qubits, even the photons that make up light. Photons have added appeal because they can swiftly shuttle information over long distances, and they are compatible with fabricated chips. However, making a quantum transistor triggered by light has been challenging because it requires that the photons interact with each other, something that doesn't ordinarily happen.

The Maryland research team headed by Professor of Electrical and Computer Engineering, JQI Fellow, and Institute for Research in Electronics and Applied Physics Affiliate Edo Waks"”has used a quantum memory to make photons interact, creating the first single-photon transistor made from a semiconductor.

The device has numerous holes in it, making it appear much like a honeycomb. Light entering the chip bounces around and gets trapped by the hole pattern. A small crystal sits inside the area where the light intensity is strongest, and, analogous to conventional computer memory, this crystal stores information about photons as they enter the device. It can then effectively tap into that memory to mediate interactions with other photons that later arrive at the chip.

The team observed that a single photon could, by interacting with the crystal, control the transmission of a second light pulse through the device. The first light pulse acts like a key, opening the door for the second photon to enter the chip. If the first pulse didn't contain any photons, the crystal blocked subsequent photons from getting through. This behaviour is similar to a conventional transistor where a small voltage controls the passage of current through its terminals. Here, the researchers successfully replaced the voltage with a single photon and demonstrated that their quantum transistor could switch a light pulse containing around 30 photons before the device's memory ran out.

"Using our transistor, we should be able to perform quantum gates between photons," says Waks. "Software running on a quantum computer would use a series of such operations to attain exponential speedup for certain computational problems.

Their device, described in the July 6 issue of Science, is compact; roughly one million of these new transistors could fit inside a single grain of salt. It is also fast and able to process 10 billion photonic qubits every second.

With realistic engineering improvements their approach could allow many quantum light transistors to be linked together, according to lead author Shuo Sun, a postdoctoral research fellow at Stanford University who was a UMD grad student at the time of the research. The team hopes that such speedy, highly connected devices will eventually lead to compact quantum computers that process large numbers of photonic qubits, .

The University of Maryland (UMD) is home to one of the world's top quantum science and technology communities, with over 200 quantum researchers on-site.

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: