+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

First programmable photonic silicon quantum chip

News

An international team of researchers led by the University of Bristol have demonstrated that light can be used to implement a programmable, multi-functional quantum processor.

The team has developed a silicon chip that can be used as a scientific tool to perform a wide array of quantum information experiments, while at the same time showing the way to how fully functional quantum computers might be developed from mainstream chip-making processes.

Quantum computers are instead based on "qubits" that can be in a superposition of the 0 and 1 states. Multiple qubits can also be linked in a special way called quantum entanglement. These two quantum physical properties provide the power to quantum computers.

One challenge is to make quantum computer processors that can be re-programmed to perform different tasks in a similar way to today's computers

The chip developed by the Bristol team can fully control two qubits of information within a single integrated chip. This means any task that can be achieved with two qubits, can be programmed and realised with the device.

"What we've demonstrated is a programmable machine that can do lots of different tasks," said Dr Xiaogang Qiang, who now works in the National University of Defence Technology in China. "It's a very primitive processor, because it only works on two qubits, which means there is still a long way before we can do useful computations with this technology. But what is exciting is that it the different properties of silicon photonics that can be used for making a quantum computer have been combined together in one device. This is just too complicated to physically implement with light using previous approaches."

"We need to be looking at how to make quantum computers out of technology that is scalable, which includes technology that we know can be built incredibly precisely on a tremendous scale," said Dr Jonathan Matthews, a member of the research team based at the Quantum Engineering Technology (QET) Labs at the University of Bristol. "We think silicon is a promising material to do this, partly because of all the investment that has already gone into developing silicon for the micro-electronics and photonics industries. And the types of devices developed in Bristol are showing just how well quantum devices can be engineered.

"A consequence of the growing sophistication and functionality of these devices is that they are becoming a research tool in their own right "” we've used this device to implement several different quantum information experiments using nearly 100,000 different re-programmed settings," he said.


Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: