Info
Info
News Article

Cadence Collaborates With TSMC To Accelerate 5nm FinFET Innovation

News

Cadence Design Systems has announced that it has collaborated with TSMC to enable customers' production delivery of next-generation system-on-chip (SoC) designs for mobile, high-performance computing (HPC), 5G and artificial intelligence (AI) applications on TSMC's 5nm FinFET process technology. As part of the collaboration, the Cadence digital, signoff and custom/analog tools have been certified for Design Rule Manual (DRM) and SPICE v1.0, and Cadence IP has been enabled for the TSMC 5nm process. The corresponding process design kits (PDKs) featuring integrated tools, flows and methodologies are now available for traditional and cloud-based environments. Additionally, mutual customers have already completed several tapeouts using Cadence tools, flows and IP for full production development on the TSMC 5nm process technology.

Cadence delivered a fully integrated digital implementation and signoff tool flow, which has been certified on TSMC's industry-leading 5nm process that has the benefits of process simplification provided by extreme ultraviolet (EUV) lithography. The Cadence full-flow includes the Innovus Implementation System, Liberate Characterization Portfolio, Quantus Extraction Solution, Tempus Timing Signoff Solution, Voltus IC Power Integrity Solution and Pegasus Verification System.

The Cadence digital and signoff tools that have been optimized for TSMC's 5nm process technology provide EUV support at key layers and associated new design rules, which enable mutual customers to reduce iterations and achieve performance, area, and power (PPA) improvements. Some of the newest enhancements for the 5nm process include predictive via-pillar-aware synthesis structuring with the Genus Synthesis Solution as well as a pin-access control routing method for cell electromigration (EM) handling in the Innovus Implementation System and Tempus ECO and also statistical EM budgeting analysis support in the Voltus IC Power Integrity Solution. The newly certified Pegasus Verification System supports 5nm rule decks for all TSMC physical verification flows including DRC, LVS and metal fill.

The Cadence custom/analog tools certified on TSMC's industry-leading 5nm process technology include the Spectre® Accelerated Parallel Simulator (APS), Spectre eXtensive Partitioning Simulator (XPS), Spectre RF Option, Spectre Circuit Simulator, Voltus-Fi Custom Power Integrity Solution, Pegasus Verification System as well as the Virtuoso® custom IC design platform, which includes the Virtuoso Layout Suite EXL, Virtuoso Schematic Editor and Virtuoso ADE Product Suite.

The Virtuoso R&D team has an ongoing and rich collaboration with the Cadence IP Group, developing 5nm mixed-signal IP using a state-of-the-art custom design methodology built on the latest Virtuoso design platform. By continually enhancing the design methodologies and capabilities included with the Virtuoso Advanced-Node and Methodology Platform for TSMC's advanced-node processes, including the 5nm process, customers can achieve better custom physical design throughput versus traditional non-structured design methodologies.

The new Virtuoso Advanced-Node and Methodology Platform (ICADVM 18.1) consists of features and functionality required for creating 5nm designs, which include an accelerated, row-based custom placement and routing methodology that enables users to improve productivity and better manage complex design rules. Cadence introduced several new features that support the 5nm process including stacked gate support, universal poly grid snapping, area-based rule support, asymmetric coloring and voltage-dependent rule support, analog cell support and support for various new devices and design constraints that are part of TSMC's 5nm technology offering.

5nm IP Enablement

Cadence is developing a differentiated advanced-node IP portfolio to support TSMC's 5nm process, which includes a high-performance memory subsystem, very high-speed SerDes and high-performance analog to meet the demands of HPC, machine learning (ML) and 5G base stations. With the release of TSMC's 5nm design infrastructure, Cadence and TSMC are actively engaged with customers and enabling next-generation SoC development by addressing the latest IP requirements for evolving application areas.

“TSMC's 5nm technology offers our customers the industry's most advanced technology to address the growing demand for computing power driven by AI and 5G,” said Suk Lee, TSMC senior director, Design Infrastructure Management Division. “By collaborating closely with Cadence, we're enabling customers to effectively differentiate themselves and deliver designs to market faster using our latest technologies.”

“We're continuing to broaden our collaboration with TSMC to facilitate 5nm FinFET adoption, giving customers access to the latest tools and IP for advanced process design creation,” said Dr. Chin-Chi Teng, senior vice president and general manager of the Digital & Signoff Group at Cadence. “Our R&D team has focused heavily on developing new features and performance improvements so that our digital and signoff and custom/analog tools and IP can be used with complete confidence, enabling customers to achieve first-pass silicon success and deliver end products within aggressive time-to-market schedules.”



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS
EV Group Establishes State-of-the-art Customer Training Facility
SUSS MicroTec Opens New Production Facility In Taiwan
South Korean Point Engineering Chooses ClassOne’s Solstice S8 For Advanced Semiconductor Plating
K-Space Offers A New Accessory For Their In Situ Metrology Tools
Cadence Announces $5M Endowment To Advance Research
Tescan And 3D-Micromac Collaborate To Increase The Efficiency Of Failure Analysis Workflows
Will Future Soldiers Be Made Of Semiconductor?
Can New Advances In CMOS Replace SCMOS Sensors In Biomedical Applications?
Panasonic Microelectronics Web Seminar
New Plant To Manufacture Graphene Electronics
Changes In The Management Board Of 3D-Micromac AG
DISCO's Completion Of New Building At Nagano Works Chino Plant
GOODFELLOW Confirms Membership In The BSI UK Graphene Group
Belgian Initiative For AI Lung Scan Analysis In Fight Against COVID-19 Goes European
U.S. Department Of Defense Partners With GLOBALFOUNDRIES To Manufacture Secure Chips At Fab 8
Imec Demonstrates 20nm Pitch Line/Space Resist Imaging With High-NA EUV Interference Lithography
Tower Semiconductor Announced Program Creating An Integrated-Laser-on-Silicon Photonics Foundry Process
TEL Introduces Episode UL As The Next Generation Etch Platform
Onto Innovation Announces New Inspection Platform
Obducat Receives Order For Fully Automated Resist Processing Tool From A Customer In Asia
ASML Reports €14.0 Billion Net Sales
ITRI And DuPont Inaugurate Semiconductor Materials Lab
Siemens And ASE Enable Next-generation High Density Advanced Package Designs
AP&S Expands Management At Beginning Of 2021

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event