+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Imec and GLOBALFOUNDRIES Announce Breakthrough in AI Chip

News

Imec, a research and innovation hub in nanoelectronics and digital technologies, and GLOBALFOUNDRIES, the specialty foundry, today announced a hardware demonstration of a new artificial intelligence chip. Based on imec’s Analog in Memory Computing (AiMC) architecture utilizing GF’s 22FDX solution, the new chip is optimized to perform deep neural network calculations on in-memory computing hardware in the analog domain. Achieving record-high energy efficiency up to 2,900 TOPS/W, the accelerator is a key enabler for inference-on-the-edge for low-power devices. The privacy, security and latency benefits of this new technology will have an impact on AI applications in a wide range of edge devices, from smart speakers to self-driving vehicles

Since the early days of the digital computer age, the processor has been separated from the memory. Operations performed using a large amount of data require a similarly large number of data elements to be retrieved from the memory storage. This limitation, known as the von Neumann bottleneck, can overshadow the actual computing time, especially in neural networks – which depend on large vector matrix multiplications. These computations are performed with the precision of a digital computer and require a significant amount of energy. However, neural networks can also achieve accurate results if the vector-matrix multiplications are performed with a lower precision on analog technology.

To address this challenge, imec and its industrial partners in imec’s industrial affiliation machine learning program, including GF, developed a new architecture which eliminates the von Neumann bottleneck by performing analog computation in SRAM cells. The resulting Analog Inference Accelerator (AnIA), built on GF’s 22FDX semiconductor platform, has exceptional energy efficiency. Characterization tests demonstrate power efficiency peaking at 2,900 tera operations per second per watt (TOPS/W). Pattern recognition in tiny sensors and low-power edge devices, which is typically powered by machine learning in data centers, can now be performed locally on this power-efficient accelerator.

“The successful tape-out of AnIA marks an important step forward toward validation of Analog in Memory Computing (AiMC),” said Diederik Verkest, program director for machine learning at imec. “The reference implementation not only shows that analog in-memory calculations are possible in practice, but also that they achieve an energy efficiency ten to hundred times better than digital accelerators. In imec’s machine learning program, we tune existing and emerging memory devices to optimize them for analog in-memory computation. These promising results encourage us to further develop this technology, with the ambition to evolve towards 10,000 TOPS/W".

“GlobalFoundries collaborated closely with imec to implement the new AnIA chip using our low-power, high-performance 22FDX platform,” said Hiren Majmudar, vice president of product management for computing and wired infrastructure at GF. “This test chip is a critical step forward in demonstrating to the industry how 22FDX can significantly reduce the power consumption of energy-intensive AI and machine learning applications.”

Looking ahead, GF will include AiMC as a feature able to be implemented on the 22FDX platform for a differentiated solution in the AI market space. GF’s 22FDX employs 22nm FD-SOI technology to deliver outstanding performance at extremely low power, with the ability to operate at 0.5 Volt ultralow power and at 1 pico amp per micron for ultralow standby leakage. 22FDX with the new AiMC feature is in development at GF’s state-of-the-art 300mm production line at Fab 1 in Dresden, Germany.

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: