+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Nature inspires graphene growth for high-end electronics

News

 Drawing inspiration from how beetles and tree frogs keep their feet attached to submerged leaves, a novel technology enables wide ranging applications for graphene

A team of researchers from the National University of Singapore (NUS), has successfully developed an innovative one-step method to grow and transfer high-quality graphene on silicon and other stiff substrates.

This discovery opens up opportunities for graphene to be used in high-value applications that are currently not technologically feasible.

The study, led by Loh Kian Ping, a professor who heads the Department of Chemistry at the NUS Faculty of Science, was inspired by how beetles and tree frogs keep their feet attached to submerged leaves. It is claimed to be the first published technique that accomplishes both the growth and transfer steps of graphene on a silicon wafer.

This technique enables the technological application of graphene in photonics and electronics, for devices such as optoelectronic modulators, transistors, on-chip biosensors and tunnelling barriers.

The innovation was first published online in scientific journal Nature.

Demand for graphene in silicon-based industries

Graphene has attracted a lot of attention in recent years because of its outstanding electronic, optical and mechanical properties, as well as its use as transparent conductive films for touch screen panels of electrodes.

However, the production of high quality wafer-scale graphene films is beset by many challenges, among which is the absence of a technique to grow and transfer graphene with minimal defects for use in semiconductor industries.

Says Loh, who is also a Principal Investigator with the Graphene Research Centre at NUS Faculty of Science, "Although there are many potential applications for flexible graphene, it must be remembered that to date, most semiconductors operate on "stiff" substrates such as silicon and quartz."

"The direct growth of graphene film on silicon wafer is useful for enabling multiple optoelectronic applications, but current research efforts remain grounded at the proof-of-concept stage. A transfer method serving this market segment is definitely needed, and has been neglected in the hype for flexible devices," Loh adds.

Drawing inspiration from beetles and tree frogs

To address the current technological gap, the NUS team led by Loh drew their cues from how beetles and tree frogs keep their feet attached to fully submerged leaves, and developed a new process they call "face-to-face transfer".

Gao Libo, the first author of the paper and a researcher with the Graphene Research Centre at NUS Faculty of Science, grew graphene on a copper catalyst layer coating a silicon substrate. After growth, the copper is etched away while the graphene is held in place by bubbles that form capillary bridges, similar to those seen around the feet of beetles and tree frogs attached to submerged leaves. The capillary bridges help to keep the graphene on the silicon surface and prevent its delamination during the etching of the copper catalyst. The graphene then attaches to the silicon layer.

To facilitate the formation of capillary bridges, a pre-treatment step involving the injection of gases into the wafer was applied by Gao. This helps to modify the properties of the interface and facilitates the formation of capillary bridges during the infiltration of a catalyst-removal liquid. The co-addition of surfactant helps to iron out any folds and creases that may be created during the transfer process.

Industrial applications and new insights

This novel technique of growing graphene directly on silicon wafers and other stiff substrates will be very useful for the development of rapidly emerging graphene-on-silicon platforms, which have shown a promising range of applications. The 'face-to-face transfer' method developed by the NUS team is also amenable to batch-processed semiconductor production lines, such as the fabrication of large-scale integrated circuits on silicon wafers.

To further their research, Loh and his team will optimise the process in order to achieve high throughput production of large diameter graphene on silicon, as well as target specific graphene-enabled applications on silicon. The team is also applying the techniques to other two-dimensional films. Talks are now underway with potential industry partners.

This work has been described in the paper, "Face-to-face transfer of wafer-scale graphene films," by Libo Gao et al in Nature, (2013).    DOI:10.1038/nature12763

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: