+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

2D self-assembling material may produce transistors

News

Ni3(HITP)2 shares graphene's hexagonal honeycomb structure for flat semiconductors and has a useable bandgap

Researchers around the world have been working to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms.

But graphene lacks one important characteristic that would make it even more useful: a property called a bandgap, which is essential for making devices such as computer chips and solar cells.

Now, researchers at MIT and Harvard University have found a two-dimensional material whose properties are very similar to graphene, but with some distinct advantages - including the fact that this material naturally has a useable bandgap.

The research, published online in the Journal of the American Chemical Society, was carried out by MIT assistant professor of chemistry Mircea Dincă and seven co-authors.

The new material, a combination of nickel and an organic compound called HITP, also has the advantage of self-assembly; Its constituents naturally assemble themselves, a "bottom-up" approach that could lend itself to easier manufacturing and tuning of desired properties by adjusting relative amounts of the ingredients.

Research on such two-dimensional materials, which often possess extraordinary properties, is "all the rage these days, and for good reason," Dincă says.

Graphene, for example, has extremely good electrical and thermal conductivity, as well as great strength. But its lack of a bandgap forces researchers to modify it for certain uses - such as by adding other molecules that attach themselves to its structure - measures that tend to degrade the properties that made the material desirable in the first place.

The new compound, Ni3(HITP)2, shares graphene's perfectly hexagonal honeycomb structure. What's more, multiple layers of the material naturally form perfectly aligned stacks, with the openings at the centres of the hexagons all of precisely the same size, about 2 nanometres across.

A diagram of the molecular structure is pictured at the top of this story. The new material shows how it naturally forms a hexagonal lattice structure, and its two-dimensional layers naturally arrange themselves so that the openings in the hexagons are all perfectly aligned. The image is courtesy of the researchers.

In these initial experiments, the researchers studied the material in bulk form, rather than as flat sheets; Dincă says that makes the current results - including excellent electrical conductivity - even more impressive, since these properties should be better yet in a 2-D version of the material. "There's every reason to believe that the properties of the particles are worse than those of a sheet," he says, "but they're still impressive."

What's more, this is just the first of what could be a diverse family of similar materials built from different metals or organic compounds.

"Now we have an entire arsenal of organic synthesis and inorganic synthesis," Dincă says, that could be harnessed to "tune the properties, with atom-like precision and virtually infinite tuneability."

Such materials, Dincă explains, might ultimately lend themselves to solar cells whose ability to capture different wavelengths of light could be matched to the solar spectrum, or to improved supercapacitors, which can store electrical energy until it's needed.

In addition, the new material could lend itself to use in basic research on the properties of matter, or to the creation of exotic materials such as magnetic topological insulators, or materials that exhibit quantum Hall effects.

"They're in the same class of materials that have been predicted to have exotic new electronic states," Dincă says. "These would be the first examples of these effects in materials made out of organic molecules. People are excited about that."

Scanning electron microscope images show the particles of Ni3(HITP)2 material at various levels of magnification. While the material in this study was in the form of nanoparticles, the analysis show that these particles are actually formed of collections of two-dimensional flakes (Image courtesy of the researchers)

Pingyun Feng, at the chemistry department at the University of California at Riverside who was not involved in this work, says the approach used by this team is "novel and surprising," and that "the quality of this work, from the synthetic design strategy to the probing of the structural details and to the discovery of exceptional electrical conductivity, is outstanding." She adds that this finding "represents a major advance in the synthetic design of novel semiconducting materials."

The work was supported by the U.S. Department of Energy and the Centre for Excitonics at MIT.

Reprinted with permission of MIT News.

http://web.mit.edu/newsoffice/

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: