+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Globalfoundries Solidifies 14nm FinFET Design Infrastructure for Next-Generation Chip Designs


Together with key ecosystem partners Cadence Design Systems, Mentor Graphics, and Synopsys, Globalfoundries has developed new digital design flows for register-transfer level (RTL) to graphic design database system (GDS) implementation. Integrated with a technology-proven process design kit (PDK) and early-access standard cell libraries, the flows create a digital design "starter kit" that provides designers with a built-in test case for out-of-the-box physical implementation testing and analysis of performance, power and area. 

"Globalfoundries is committed to providing our customers with advanced technology platforms that include the comprehensive design infrastructure required to optimize design productivity and cycle time," said Rick Mahoney, senior vice president of design enablement at Globalfoundries. "To ensure our design ecosystem delivers the highest quality experience with our 14nm FinFET technology, Globalfoundries has collaborated with our EDA partners to complement our in-house global design capabilities and accelerate time-to-volume of designs on complex technologies like 14nm FinFET."

Globalfoundries' digital design flows have been optimized to solve the challenges associated with the critical design rules of the 14nm technology node and includes newly introduced features such as implant-aware placement and double-patterning aware routing, In-Design DRC fixing and yield improvement, local/random variability aware timing, 3D FinFET extraction, and colour-aware LVS/DRC sign-off.

The Synopsys-based Design Enablement Starter Kit leverages broad capabilities of its Galaxy Design Platform to deliver signed-off ' Globalfoundries 14LPP FinFET designs with optimized performance, power and area. Synopsys' Design Compiler Graphical synthesis, coupled with its Formality equivalence checking solution, streamlines the flow by providing physical guidance and results that closely correlate with physical implementation. For FinFET implementation, Synopsys' IC Compiler, IC Compiler II and IC Validator solutions provide implant- and double-patterning-aware placement and routing with In-Design colour-aware physical verification. Synopsys' StarRC extraction provides double-patterning support, with modelling for colour-aware and 3-D extraction essential for 14nm designs. In addition, the industry-standard Synopsys PrimeTime sign-off solution for accurate delay calculation, timing analysis and advanced waveform propagation accurately accounts for FinFET impacts such as ultra-low voltage, increased Miller effect and resistivity, and process variation.

To enable customers to achieve the benefits of GLOBALFOUNDRIES' 14LPP node at the design level, GLOBALFOUNDRIES and Cadence have worked together to create a digital flow for a complete RTL-to-GDSII FinFET solution. The digital flow integrates and optimizes Cadence's front-end, back-end, physical verification, and DFM solutions for 14LPP technology. For front-end design, Cadence's RTL Compiler synthesis flow is fine-tuned with the 14LPP library.  For physical implementation, both Encounter Digital Implementation System (EDI) and Innovus Implementation System provide color-aware double-patterning technology for correct-by-construction placement and routing, and customized settings for the 14LPP design rules and library to optimize power, performance and area (PPA).  In-design PVS DRC fixing and in-design litho hot-spot fixing are both available to designers to reduce design iterations and ease design closure.  For signoff, the flow features fully integrated Quantus QRC Parasitic Extraction and Tempus Timing Signoff solutions.  Integration within both EDI and Innovus allows Quantus and Tempus to bring advanced process modeling earlier in the P&R flow for better timing convergence and time-to-tapeout.  Encounter Conformal Equivalence Checker is embedded in multiple stages in the implementation flow.  Voltus power and EMIR analysis, standalone Physical Verification System physical verification and Litho Physical Analyzer litho hot-spot check are also embedded in the reference flow.  The reference flow provides a guided approach to Cadence's tool suite and the GLOBALFOUNDRIES 14LPP process to ensure designers hit the maximum PPA envelope with minimum ramp-up time.

As with production tape-outs at prior nodes, the starter kit uses the Mentor Graphics Calibre tool suite for sign-off. In the case of the 14nm starter kit, the Calibre nmDRC and Calibre MultiPatterning products are used for layer decomposition, DRC verification and metal filling, while the Calibre nmLVS product is used for logic verification.

Globalfoundries 14nm FinFET technology is among the most advanced in the industry, offering an ideal solution for the most demanding high-volume, high-performance and power-efficient SoC designs. The 3D FinFET devices offers the perfect answer to growing market needs, with best-in-class intrinsic performance boost over 28nm technology and a superior power footprint compared to any predecessors. These leading edge devices also provide a true cost advantage due to superior power, performance and area scaling.

Globalfoundries is yielding on its 14nm technology and is on schedule to support multiple product tape-outs and volume ramp in 2015.

Through Globalfoundries design partnership ecosystem, designers have access to a broad spectrum of services such as system design, embedded software design, SoC design and verification, and physical implementation.  These include design flows for electronic design automation (EDA); silicon-proven IP building blocks, such as libraries; and simulation and verification design kits, i.e., process design kits (PDK) and technology files.

Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: