+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Perfectly formed memory


Resistive random-access memory that avoids an initial forming process improves fabrication methods and reliability

An enhanced design for a promising computer memory technology has been developed by A*STAR researchers. Victor Zhuo and colleagues developed resistive random-access memory (RRAM) that, during fabrication, does not require a harmful high-voltage forming process1.

RRAM is the most promising nonvolatile memory system as it shows similar functionality to present solid-state memory drives, but has a higher storage density and longevity. RRAM devices can be scaled down to smaller than 14 nanometers. They also offer a straightforward operation mechanism where the memory state of the material that corresponds to the bits used by computers is determined merely by the electrical resistance of the device. This resistance can be "˜switched' by orders of magnitude, just by using electrical voltage pulses applied to the RRAM device.

The rudimentary operation mechanism of RRAM means the chips have a simple fabrication method. However, a drawback of RRAM fabrication is that the memory device is not in one of the two electrical resistance states needed for operation. A high forming current is required to set the memory into the right state: this complicates fabrication and requires further monitoring for damages.

Researchers from the A*STAR Data Storage Institute and the A*STAR Institute of Microelectronics have developed a design for the device that delivers memory in the desired state and avoids the use of forming currents.

On the microscopic level, the resistance switching of RRAM occurs through the migration of oxygen atoms. As RRAM materials are made from a combination of metal and oxygen atoms; removing oxygen causes an oxygen shortage in the material. This lowers the material's electrical resistance, allowing electrical current to flow. Introducing oxygen back into the material increases its electrical resistance and makes it an insulator.

Victor Zhuo (left) and Li Minghua (right).

The RRAM devices studied by Zhuo's team uses tantalum oxide with electrical contacts made from either titanium nitride or tantalum. When using titanium nitride, which is chemically not very reactive, a forming voltage is required during production. However, when using the more chemically reactive tantalum, the device is ready to use right away. Tantalum has a natural affinity to react with the oxygen that helps to prepare the material in the right state.

The aim is to demonstrate this concept in advanced devices, adds Zhuo. "Our next step is to integrate RRAM memory devices with a selector for ultra-high density nonvolatile memory applications."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of Microelectronics


Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: