+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Successful demonstration of nonvolatile memory sub-nanosecond operation good news for IoT


The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has demonstrated the sub-nanosecond operation of a nonvolatile magnetic memory device.

Recently, the concept of "Internet of Things" (IoT) - a giant network of connected devices, people and things - has been attracting a great deal of attention. Although its range of application is limited at this stage, it is expected that in the near future, IoT will be widely applied and will play important roles in fields such as security, automated driving, social infrastructure and disability aid.

An integrated circuit, or microcontroller unit, is the brain in the IoT society, where information is acquired, processed, and transmitted. Thus, development of device technologies to make integrated circuits ultralow-power and high-performance, or high-speed, is of great importance for the progress of the IoT society.

In terms of low-power, the use of nonvolatile memories is known to be effective.

On the other hand, in terms of high-performance, it has been difficult for the nonvolatile memories which are both currently available (commercialized) and under development (not commercialized yet) to achieve the speed comparable to the one realized with currently-used volatile static random access memories.

The research group at Tohoku University had previously announced that they had developed a new-structure nonvolatile magnetic memory device. The device has a three-terminal configuration, which is different from the two-terminal magnetic memory device that is just about to hit the market.

The device uses a new scheme of spin-orbit torque-induced magnetization switching, which has been predicted to be suitable for the fast control of magnetization.

Here, the group fabricated the developed new-structure device and successfully demonstrated 0.5-nanosecond operation with a sufficiently small current. The achieved speed is comparable to the highest class of static random access memories currently available.


The group members showed that the current required to switch the magnetization does not significantly change with the operation speed unlike the case for the conventional two-terminal magnetic memory devices where the required current increases as the speed increases.

They also addressed several issues of the spin-orbit torque-induced switching device. They achieved an external-field-free switching and a reduction of switching current density by improving the structure and material systems.



FIG. 2: Experimentally obtained switching error rate as a function of applied current density for two devices with different material systems. Duration of current pulse is 0.5 ns. For both materials, 500-times switching for 500-times trial is obtained with a sufficiently small current density.

The present work is expected to pave the way for the realization of ultralow-power and yet high-performance microcontroller units that are indispensable for the future progress of IoT societies.

This work is supported by the ImPACT Program of CSTI, R&D Project for ICT Key Technology to Realize Future Society of MEXT, and JSPS KAKENHI Grant numbers 15K13964 and 15J04691.


Purdue, imec, Indiana announce partnership
Resilinc partners with SEMI on supply chain resilience
NIO and NXP collaborate on 4D imaging radar deployment
Panasonic Industry digitally transforms with Blue Yonder
Global semiconductor sales decrease 8.7%
MIT engineers “grow” atomically thin transistors on top of computer chips
Keysight joins TSMC Open Innovation Platform 3DFabric Alliance
Leti Innovation Days to explore microelectronics’ transformational role
Quantum expansion
indie launches 'breakthrough' 120 GHz radar transceiver
Wafer fab equipment - facing uncertain times?
Renesas expands focus on India
Neuralink selects Takano Wafer Particle Measurement System
Micron reveals committee members
Avoiding unscheduled downtime in with Preventive Vacuum Service
NFC chip market size to surpass US$ 7.6 billion
Fujifilm breaks ground on new €30 million European expansion
Fraunhofer IIS/EAS selects Achronix embedded FPGAs
Siemens announces certifications for TSMC’s latest processes
EU Chips Act triggers further €7.4bn investment
ASE recognised for excellence by Texas Instruments
Atomera signs license agreement with STMicroelectronics
Gartner forecasts worldwide semiconductor revenue to decline 11% in 2023
CHIPS for America outlines vision for the National Semiconductor Technology Center
TSMC showcases new technology developments
Alphawave Semi showcases 3nm connectivity solutions
Greene Tweed to open new facility in Korea
Infineon enables next-generation automotive E/E architectures
Global AFM market to reach $861.5 million
Cepton expands proprietary chipset
Semtech adds two industry veterans to board of directors
Specialty gas expansion
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Silicon Semiconductor Magazine, the Silicon Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: